Geometric Study of Complex Analysis
复分析的几何研究
基本信息
- 批准号:09440054
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Head investigator Fujimoto studied value-distribution-theoretic properties of meromorphic maps of C^n into P^N(C) and gave some new results as their applications.He showed that, for 3N +1 hyperplanes H_j's in P^N(C) located in general position, there exists at most two meromorphic maps f of C^n into P^N(C) such that the inverse images f^<-1>(H_j)'s, which are counted with multiplicities truncated by two, coincide with given divisors D_j's. He also proved that, for 2N +2 hyperplanes H_j, in P^N(C) located in general position, there is some positive integer l_0 such that, if two meromorphic maps f and g of C^n into P_N(C) have the same inverse images counted with multiplicities truncated by l_0 for each H_j, then f and g are algebraically degenerate.He also studied uniqueness range sets for meromorphic functions on C, namely, sets S with the property that the condition f^<-1>(S) = g^<-1>(S), counted f, g on C.For a finite set S = {a_1, a_2, ・・・, a_q}, he considers the polynomial P(w) : = (w - a_1)(w - a_2)・・・(w - a_q) and assumes that the derivative P(w) has k distinct zeros d_1, d_2, ・・・, d_h. He showed that, if k <greater than or equal> 4, q > 2k + 6, P(d_l) * P(d_m) for l * m and SIGMA_l P(d_l) * 0, then S is a uniqueness range set. He also gives some other sufficient conditions for a finite set to be a uniqueness range set.
主管研究员藤本植物的c^n中c^n的子形态图的价值分布理论特性中的p^n(c),并给出了一些新的结果。 f^<-1>(h_j)的s,以二次截断为二,与给定的分隔符D_J相一致。他还证明,对于2N +2个超平面H_J,在位于普通位置的P^n(c)中,有一些积极的整数L_0,如果两个c^n的c^n的c^n的f和g的c^n的f和g具有相同的逆图,则与l_0相同的相对映像,然后degne for f e n e n set n e n set for n set for degne degen,for degne degen necored interge degen toce necored。 Meromorthic在C上的作用,即,与条件f^<-1>(s)= G^<-1>(s)的属性设置为s,计数f,g on C上C上的c。用于有限集s = {a_1,a_1,a_2,a_2,...,...,a_q}导数p(w)具有k独特的零d_1,d_2,...,d_h。他表明,如果k <大于或等于> 4,q> 2k + 6,p(d_l) * p(d_m)对于l * m和sigma_l p(d_l) * 0,则s是独特范围集。他还提供了其他足够的条件,以使有限的设置为独特范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Kodama: "A Characterization of certain weaboly pseudoconvex domains" Tohoku Math. J.51. (1999)
A.Kodama:“某些弱伪凸域的表征”东北数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Noguchi: "Value distribution theory of holomorphic 〓" Cnitemp. Math.222. 109-129 (1999)
J.Noguchi:“全纯的价值分布理论”Cnitemp.222(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Morishita: "On a fimily of subgroups of the Teichmuller modular group of genus tow obtained from the Jones representation" J.Math.Sci.Univ.Tokkyo. 4. 402-415 (1997)
M.Morishita:“关于从琼斯表示中获得的 Teichmuller 模群的子群”J.Math.Sci.Univ.Tokkyo。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hirotaka Fujimoto: "Uniqueness with trancated multiplicities in value distribution theory II" Nagoya Mathematical Jounal. (未定). (1999)
Hirotaka Fujimoto:“价值分布理论 II 中的唯一性与截断多重性”名古屋数学杂志(TBD)(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ishizuki K.Tohge: "Hypentrans cendency of meronayhic solutions of a functional ecascation" Report.of Researhes of NIT. 27. 479-484 (1997)
K.Ishizuki K.Tohge:“功能级联的 meronayhic 解决方案的 Hypentrans cendency”NIT 研究报告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIMOTO Hirotaka其他文献
FUJIMOTO Hirotaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIMOTO Hirotaka', 18)}}的其他基金
Geometric researches in complex analysis
复杂分析中的几何研究
- 批准号:
12304007 - 财政年份:2000
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Value distribution theory of meromorphic mappings concerningdefects and its application to uniqueness theorems
缺陷亚纯映射的值分布理论及其在唯一性定理中的应用
- 批准号:
18540156 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
COSIP-D RESEARCH INITIATION - EXISTENCE AND UNIQUENESS THEOREMS FOR SOLUTIONS OF THREE POINT BOUNDARY VALUE PROBLEMS
COSIP-D研究启动——三点边值问题解的存在唯一性定理
- 批准号:
7353544 - 财政年份:1973
- 资助金额:
$ 2.18万 - 项目类别:
Cosip-D Research Initiation - Existence and Uniqueness Theorems For Solutions of Three Point Boundary Value Problems
Cosip-D研究启动——三点边值问题解的存在唯一性定理
- 批准号:
7310309 - 财政年份:1973
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Uniqueness theorems and analysis of classical density functional theory in nonequilibrium random geometries
非平衡随机几何中经典密度泛函理论的唯一性定理与分析
- 批准号:
443847390 - 财政年份:
- 资助金额:
$ 2.18万 - 项目类别:
Priority Programmes