Framed cobordism invariant of V-manifolds and its application to the cobordism category of 3-manifolds
V流形的框架配边不变量及其在3流形配边范畴中的应用
基本信息
- 批准号:20740048
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Young Scientists (B)
- 财政年份:2008
- 资助国家:日本
- 起止时间:2008 至 2010
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The boundary of a surface is a curve. Conversely, can any curve be realized as the boundary of a surface? In our research, we study this problem for objects called manifold which is a higher-dimensional generalization of curves and surfaces. In particular, we study what kind of 4-manifold has a given 3-dimensional manifold as boundary. In general, we can compute an invariant called homology ring of any manifold, which approximate the shape of manifolds by algebras. To study the relationship between the homology ring of 3-manifolds and that of 4-manifolds, we applied an inequality called Furuta-Kametani inequality of 4-dimensional manifolds (orbifolds), and introduced a kind of distances between 3-manifolds called Φ-Bounding genus which is a generalization of the notion of the Bounding genus introduced by Y. Matsumoto, and studied their properties.
曲面的边界是一条曲线,任何曲线都可以实现为曲面的边界吗?在我们的研究中,我们研究了流形的对象,它是曲线和曲面的高维推广。我们研究什么样的4-流形具有给定的3维流形作为边界。一般来说,我们可以计算任何流形的称为同源环的不变量,它通过代数来近似流形的形状来研究关系。在3-流形的同源环和4-流形的同调环之间,我们应用了称为4维流形(轨道)的Furuta-Kametani不等式的不等式,并引入了一种称为Φ-Bounding genus的3-流形之间的距离,其为Y. Matsumoto 提出的 Bounding 属概念的推广,并研究了它们的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bounding Genus and the Spin Cobordism Category of 3-manifolds
有界亏格与3-流形的自旋配边范畴
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Y.Fukumoto
- 通讯作者:Y.Fukumoto
Brieskornホモロジー球面の幾つかの無限族に対するBounding genusについて
关于Brieskorn同调球的一些无限族的有界亏格
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:福本善洋
- 通讯作者:福本善洋
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUKUMOTO Yoshihiro其他文献
Differences in muscle thickness and echo intensity between stroke survivors and age- and sex-matched healthy older adults
中风幸存者与年龄和性别匹配的健康老年人之间肌肉厚度和回声强度的差异
- DOI:
10.1298/ptr.e10018 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
MONJO Hiroki;FUKUMOTO Yoshihiro;ASAI Tsuyoshi;KUBO Hiroki;OHSHIMA Kensuke;TAJITSU Hirotsugu;KOYAMA Shota - 通讯作者:
KOYAMA Shota
FUKUMOTO Yoshihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUKUMOTO Yoshihiro', 18)}}的其他基金
Structures of homology cobordism invariants in the cobordism category of 3-manifolds
3-流形配边范畴中同调配边不变量的结构
- 批准号:
23540113 - 财政年份:2011
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Novel Biomarker to Predict Cardiovascular Diseases
开发预测心血管疾病的新型生物标志物
- 批准号:
21590884 - 财政年份:2009
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long-term Inhibition of Rho-kinase Ameliorates Diastolic Heart Failure in Hypertensive Rats
长期抑制 Rho 激酶可改善高血压大鼠舒张性心力衰竭
- 批准号:
19590803 - 财政年份:2007
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Uniformization of 4-orbifolds and gauge theory
四环折叠与规范理论的均匀化
- 批准号:
22K03322 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cobordism category of 3-manifolds and analysis on moduli spaces of flat connections
3-流形的共边范畴及平面连接模空间分析
- 批准号:
26400101 - 财政年份:2014
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homology cobordism groups of surfaces and Lie algebras of associated graphs
曲面的同调共边群和关联图的李代数
- 批准号:
24740040 - 财政年份:2012
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Structures of homology cobordism invariants in the cobordism category of 3-manifolds
3-流形配边范畴中同调配边不变量的结构
- 批准号:
23540113 - 财政年份:2011
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
曲面の写像類群、ホモロジー同境のなす群と閉3次元多様体の不変量
曲面的映射类群、同调边界群和封闭 3 维流形的不变量
- 批准号:
08J02356 - 财政年份:2008
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows