Applications of Frobenius splitting to algebraic geometry
Frobenius 分裂在代数几何中的应用
基本信息
- 批准号:23740024
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Young Scientists (B)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research project was to give an affirmative answer to Schwede-Smith's conjecture, which says that a projective variety X over an algebraically closed field of characteristic zero is log Fano if and only if its modulo p reduction is globally F-regular for sufficiently large p. We proved that the conjecture holds true when X is a Mori dream space or a surface. Under the same assumption, that is, when X is a Mori dream space or a surface, we also proved that if its modulo p reduction is globally F-split for infinitely many p, then X is log Calabi-Yau.
该研究项目的目的是对Schwede-Smith的猜想做出肯定的答案,该猜想说,当且仅当其模量降低是全球fr-fraincuntion时,特征零的代数闭合字段的投射品种X对于足够大的P。我们证明,当X是Mori梦想空间或表面时,猜想是正确的。在相同的假设下,即当X是Mori Dream空间或表面时,我们还证明,如果其模量降低是无限多P的全球f-Split,则X是log calabi-yau。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CHARACTERIZATION OF VARIETIES OF FANO TYPE VIA SINGULARITIES OF COX RINGS
- DOI:10.1090/s1056-3911-2014-00641-x
- 发表时间:2012-01
- 期刊:
- 影响因子:1.8
- 作者:Yoshinori Gongyo;Shinnosuke Okawa;Akiyoshi Sannai;S. Takagi
- 通讯作者:Yoshinori Gongyo;Shinnosuke Okawa;Akiyoshi Sannai;S. Takagi
Globally F-regular and Frobenius split surfaces
全局 F 正则曲面和 Frobenius 分割曲面
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Shunsuke Takagi;Shunsuke Takagi
- 通讯作者:Shunsuke Takagi
A characterization of log Fano varieties
原木 Fano 品种的表征
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Goto;Ryushi;Donghi Lee and Makoto Sakuma;諏訪紀幸;S.Takagi
- 通讯作者:S.Takagi
A geometric interpretation of 3-dimensional F-regular graded rings
3维F-正则渐变环的几何解释
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Shunsuke Takagi
- 通讯作者:Shunsuke Takagi
共 16 条
- 1
- 2
- 3
- 4
TAKAGI Shunsuke的其他基金
A study on adjoint ideal sheaves by characteristic p methods
伴随理想滑轮的特征p法研究
- 批准号:2074001920740019
- 财政年份:2008
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
Study of People's Diary in the Bakumatsu-Meiji Period
幕末明治时期人民日记研究
- 批准号:1652037716520377
- 财政年份:2004
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research on the Japanese archives in the European countries
欧洲国家的日本档案研究
- 批准号:0904104009041040
- 财政年份:1997
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (A).Grant-in-Aid for Scientific Research (A).
A Basic Study of Daily Life History in the Later Tokugawa-and Early Meiji Peridos.
德川后期和明治初期的日常生活史基础研究。
- 批准号:0461019604610196
- 财政年份:1992
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for General Scientific Research (C)Grant-in-Aid for General Scientific Research (C)
相似海外基金
非可換代数幾何学とホッホシルトコホモロジー論におけるコシュールAS正則環の研究
非交换代数几何中Koshur AS正则环与Hochschild上同调理论的研究
- 批准号:24K0665324K06653
- 财政年份:2024
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
代数幾何学の計算機による研究の新展開
代数几何计算机研究的新进展
- 批准号:23K2020923K20209
- 财政年份:2024
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
リーマン面に関連する位相幾何学の代数的展開
与黎曼曲面相关的拓扑的代数展开
- 批准号:23K2239123K22391
- 财政年份:2024
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
非可換代数幾何学の研究
非交换代数几何研究
- 批准号:23K2020823K20208
- 财政年份:2024
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
代数多様体のK安定性理論とArakelov幾何学
代数簇的 K 稳定性理论和 Arakelov 几何
- 批准号:23K2576623K25766
- 财政年份:2024
- 资助金额:$ 2.83万$ 2.83万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)