Foraging and reproduction based on memory and learning in flys : foraging trajectory and chaotic attractor shift

基于苍蝇记忆和学习的觅食和繁殖:觅食轨迹和混沌吸引子转移

基本信息

  • 批准号:
    18570012
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

Optimal foraging theory has a premise that organisms behave rationally estimating current and future profits completely and calculates the foraging strategy applying the optimal algorism that are far from the realism. Therefore, behavioral ecologists would like to re-build the foraging theory, taking into account the realistic constrain on memory and learning ability of actual organisms. In the present research project, we conducted the behavior experiment on walking trajectory in the fruit fly, Drosophila melanogasuter. We expected to reveal the ultimate factor (e.g., biological fitness) in the foraging efficiency, analyzing the pattern in the diet-searching trajectory of D. melanogaster. Firstly, we discovered that a walking bout follows estimation of the mixed model that are in between "power distribution" based on Levy-flight walking and "exponential distribution" inferred from random walking, and that the walking showed a directionally-biased tendency. This results can be explained as combined behaviors by natural selection which promoted Levy-flight walking increasing the foraging efficiency and by embodiment constraint on a realistic organism. Furthermore, conducting the time-series analysis based on locally stationary auto-regression model, we showed that the movement speed was kept for a certain period with maintaining the same auto-regression model and that the conversion turn degree was not, suggesting a natural selection on the movement speed. Thus, the present project that was ordered by physical and statistical methods analyzed decision-making processes, and it showed unique results beyond the current behavioral ecology.
最优觅食理论的前提是生物体的行为完全理性地估计当前和未来的利润,并应用最优算法计算觅食策略,但与现实相去甚远。因此,行为生态学家希望重建觅食理论,考虑到实际生物体记忆和学习能力的现实限制。在本研究项目中,我们对果蝇 Drosophila melanogsuter 的行走轨迹进行了行为实验。我们希望通过分析黑腹果蝇的饮食搜索轨迹模式来揭示觅食效率的最终因素(例如生物适应性)。首先,我们发现步行回合遵循混合模型的估计,该混合模型介于基于 Levy 飞行步行的“功率分布”和随机步行推断的“指数分布”之间,并且步行表现出方向性偏差的趋势。这一结果可以解释为自然选择的组合行为,自然选择促进了利维飞行行走,提高了觅食效率,并且通过对现实生物体的体现约束。此外,基于局部平稳自回归模型进行时间序列分析,我们发现在保持相同的自回归模型的情况下,运动速度在一定时间内保持不变,而转换转弯程度则不然,这表明自然选择关于移动速度。因此,本项目通过物理和统计方法分析决策过程,并显示出超越当前行为生态学的独特结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ニューラルネットによる採餌行動の進化モァル
使用神经网络进化觅食行为
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    堀部直人;嶋田正和
  • 通讯作者:
    嶋田正和
Analysis of foraging path using real time tracking system
利用实时跟踪系统分析觅食路径
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Horibe; T. Ikegami;M. Shimada
  • 通讯作者:
    M. Shimada
Sex ratio schedules in a dynamic game: the effect of competitive asymmetry by male emergence order
动态博弈中的性别比例安排:男性出现顺序的竞争不对称效应
  • DOI:
    10.1093/beheco/arm083
  • 发表时间:
    2007-11-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    J. Abe;Y. Kamimura;M. Shimada
  • 通讯作者:
    M. Shimada
A Novel Algorithm of Cooperative Foraging for Swarm Robot Based on Neural Network*
基于神经网络的群体机器人协作觅食新算法*
Analysis of foraging path using real time tracking system
利用实时跟踪系统分析觅食路径
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Horibe; T. Ikegami;M. Shimada
  • 通讯作者:
    M. Shimada
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIMADA Masakazu其他文献

SHIMADA Masakazu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIMADA Masakazu', 18)}}的其他基金

Dynamical theory of switching predation based on chemical substances arising learning behaviors in the parasitic wasp
基于化学物质引起寄生蜂学习行为的切换捕食动力学理论
  • 批准号:
    17H03731
  • 财政年份:
    2017
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New perspective on switching predation theory based on learning behavior of the parasitic wasp: integration of population dynamics and neuroethology
基于寄生蜂学习行为的切换捕食理论的新视角:种群动态与神经行为学的整合
  • 批准号:
    26291089
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adaptation of the bruchine seed beetles to chemical substances of the leguminosae: genetic diversity in detoxication and dry seed utilization
马齿苋种子甲虫对豆科化学物质的适应:解毒和干种子利用的遗传多样性
  • 批准号:
    26304016
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population dynamics of one-parasitoid-two-bruchine-host systems with learning and memory: cooperation with neuroethology
具有学习和记忆功能的一寄生蜂二马齿苋宿主系统的种群动态:与神经行为学的合作
  • 批准号:
    23370009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Host-plant shift and adaptive generarization of bruchine seed beetles for legume plants: toxins and infection of dry-mature seeds
豆科植物马钱子种子甲虫的寄主植物转移和适应性遗传:干成熟种子的毒素和感染
  • 批准号:
    23405008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis on cell filament formation and phenotypic plasticity of Escherichia coli using micro fluid system : rapid adaptation
利用微流体系统分析大肠杆菌的细胞丝形成和表型可塑性:快速适应
  • 批准号:
    22657006
  • 财政年份:
    2010
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Adaptive reproduction strategy and population dynamics through learning and memory of the parasitic wasp and bruchine beetles
通过寄生黄蜂和马钱子甲虫的学习和记忆实现适应性繁殖策略和种群动态
  • 批准号:
    20370008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular phylogenetics on coevolution between legume plants and seed predator insects: toxin effects
豆科植物与种子捕食昆虫之间协同进化的分子系统发育:毒素效应
  • 批准号:
    20405006
  • 财政年份:
    2008
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Phylogenetic analysis on coevolution between Leguminous plants and their parasites/mutualists.
豆科植物与其寄生物/共生体之间协同进化的系统发育分析。
  • 批准号:
    17405005
  • 财政年份:
    2005
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Coevolutionary dynamics of Wolbachia multiply infesting the azuki bean beetle
沃尔巴克氏体繁殖感染小豆甲虫的协同进化动力学
  • 批准号:
    13640625
  • 财政年份:
    2001
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

基于SENP1-Sirt3轴调控线粒体分裂/融合稳态探讨电针改善MCAO/R学习记忆障碍的作用机制研究
  • 批准号:
    82305364
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
完全统计学习原则下的零经验风险记忆学习研究
  • 批准号:
    62366035
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于混合变量机器学习模型设计高弹热效应高循环稳定性形状记忆合金
  • 批准号:
    52303297
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CD39通过水解胞外ATP促进衰老致学习记忆障碍的机制研究
  • 批准号:
    82304470
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂代谢调控参与偏侧咀嚼诱发学习记忆能力改变的分子机制研究
  • 批准号:
    82370982
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
  • 批准号:
    10825287
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
  • 批准号:
    10825849
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
  • 批准号:
    2345655
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
AF: Small: Memory Bounded Optimization and Learning
AF:小:内存限制优化和学习
  • 批准号:
    2341890
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了