Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
基本信息
- 批准号:23540008
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Littlewood-Richardson coefficients, which are the coefficients of products of Schur functions expanded as sums of Schur functions, are described as the numbers of combinatorial objects called Littlewood-Richardson tableaux.For the bijection between Littlewood-Richardson tableaux given by Azenhas, which realizes the symmetry of Littlewood-Richardson coefficients reflecting the commutativity of Schur dunctions, is given two combinatorial proofs, by collaboration with King and Azenhas, one of which using the conventional Littlewood-Richardson tableaux and the other using new combinatorial objects called hives which have been introduced by Knutson and Tao rather recently.
Littlewood-Richardson系数是Schur函数产品的系数,作为Schur功能的总和,被描述为称为Littlewood-Richardson Tableaux的组合物体数量。组合证明是通过与King和Azenhas的合作进行的,其中一种使用传统的Littlewood-Richardson Tableaux,另一种使用Knutson和Tao引入的新组合物体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERADA Itaru其他文献
TERADA Itaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERADA Itaru', 18)}}的其他基金
Representation theory (of classical groups, quantum groups and Hecke algebras) and combinatorics
表示论(经典群、量子群和赫克代数)和组合学
- 批准号:
19540012 - 财政年份:2007
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
- 批准号:
12640011 - 财政年份:2000
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
- 批准号:
09640012 - 财政年份:1997
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A study of combinatorial problems caused by the crossing of chords
和弦交叉引起的组合问题研究
- 批准号:
19K03607 - 财政年份:2019
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on random partitions and random matrices based on combinatorics and representation theory
基于组合学和表示论的随机划分和随机矩阵研究
- 批准号:
17K05281 - 财政年份:2017
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enumerative combinatorics on matchings and its application
匹配的枚举组合学及其应用
- 批准号:
25800009 - 财政年份:2013
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Representation theory (of classical groups, quantum groups and Hecke algebras) and combinatorics
表示论(经典群、量子群和赫克代数)和组合学
- 批准号:
19540012 - 财政年份:2007
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
旗多様体とそのp進的類似物及びヤング図形関係組合せ論の統一的理解
对标志流形、其 p 进类似物和杨氏几何关系组合的统一理解
- 批准号:
08740011 - 财政年份:1996
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)