Design and Analysis of Efficient Class-oriented Graph Mining Systems
高效的面向类的图挖掘系统的设计与分析
基本信息
- 批准号:23500182
- 负责人:
- 金额:$ 3.33万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our object of this research is to develop an effective graph pattern designing system for efficient data mining from graph-structured data. During this research period, the following results mainly were obtained.(1) A tree contraction pattern (TC-pattern) is an unordered tree-structured pattern common to given unordered trees, which is obtained by merging every uncommon connected substructure into one vertex by edge contraction. We show that an important subclass of TC-patterns is polynomial-time inductively inferable from positive data. Moreover, we discuss the optimization versions of the learning problems for TC-patterns, and give the conditions under which the optimization problems are hard to compute.(2) We introduce context-deterministic regular formal graph systems (FGS) as one of the effective graph pattern designing systems, and propose a polynomial time algorithm for learning the class of context-deterministic regular FGSs in the framework of MAT learning.
这项研究的目的是开发一个有效的图形图案设计系统,以从图形结构数据中挖掘有效的数据挖掘。 (1)树木收缩模式(TC-Pattern)是一种与给定的无序树相同的无序的树结构模式,这是通过将每个不常见的连接的子结构合并到一个边缘收缩中,可以获得一个无序的树结构模式。我们表明,TC模式的重要子类是从阳性数据中推断出多项式时间。 Moreover, we discuss the optimization versions of the learning problems for TC-patterns, and give the conditions under which the optimization problems are hard to compute.(2) We introduce context-deterministic regular formal graph systems (FGS) as one of the effective graph pattern designing systems, and propose a polynomial time algorithm for learning the class of context-deterministic regular FGSs in the framework of MAT learning.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure-based Data Mining and Screening for Network Traffic Data
基于结构的网络流量数据挖掘与筛选
- DOI:10.1109/iiai-aai.2013.78
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Hiroshi Hirai;Shigeru Takano;Einoshin Suzuki;H. Tsuruta and T . Shoudai
- 通讯作者:H. Tsuruta and T . Shoudai
頻出時系列発見近似ストリームアルゴリズムとそのデータスクリーニングへの応用について
频繁时间序列发现近似流算法及其在数据筛选中的应用
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:岡本 敦;鶴田 悠;正代 隆義
- 通讯作者:正代 隆義
Polynomial Time Inductive Inference of Cograph Pattern Languages from Positive Data
正数据的 Cograph 模式语言的多项式时间归纳推理
- DOI:10.1007/978-3-642-31951-8_32
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Y.Yoshimura;T.Shoudai;Y.Suzuki;T.Uchida;T.Miyahara
- 通讯作者:T.Miyahara
マルコフ連鎖モンテカルロ法の木構造パターン発見への応用
马尔可夫链蒙特卡罗方法在树结构模式发现中的应用
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:小柳 健介;岡本 康宏;丸山 修;正代隆義
- 通讯作者:正代隆義
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHOUDAI Takayoshi其他文献
Exact Learning of Primitive Formal Systems Defining Labeled Ordered Tree Languages via Queries
通过查询定义带标签有序树语言的原始形式系统的精确学习
- DOI:
10.1587/transinf.2018fcp0011 - 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
UCHIDA Tomoyuki;MATSUMOTO Satoshi;SHOUDAI Takayoshi;SUZUKI Yusuke;MIYAHARA Tetsuhiro - 通讯作者:
MIYAHARA Tetsuhiro
An Efficient Pattern Matching Algorithm for Unordered Term Tree Patterns of Bounded Dimension
有界维无序词树模式的高效模式匹配算法
- DOI:
10.1587/transfun.e101.a.1344 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
SHOUDAI Takayoshi;MIYAHARA Tetsuhiro;UCHIDA Tomoyuki;MATSUMOTO Satoshi;SUZUKI Yusuke - 通讯作者:
SUZUKI Yusuke
SHOUDAI Takayoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHOUDAI Takayoshi', 18)}}的其他基金
Machine learning theory for graph pattern languages and its applications to graph mining
图模式语言的机器学习理论及其在图挖掘中的应用
- 批准号:
20500016 - 财政年份:2008
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polynomial Time Algorithms for Learning Graph Structured Pattern Languages and its Applications
图结构化模式语言学习的多项式时间算法及其应用
- 批准号:
17500009 - 财政年份:2005
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distributed Data Mining Systems for Structured Web Data
结构化 Web 数据的分布式数据挖掘系统
- 批准号:
14580423 - 财政年份:2002
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of high-performance graph mining methods for graph structured data using various additional information
使用各种附加信息开发图结构化数据的高性能图挖掘方法
- 批准号:
19K12102 - 财政年份:2019
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of parallel graph mining systems for compressed large-scale graph structured data
开发用于压缩大规模图结构化数据的并行图挖掘系统
- 批准号:
19K12103 - 财政年份:2019
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on computational learning theory of formal graph systems by graph structure distribution
基于图结构分布的形式图系统计算学习理论研究
- 批准号:
17K00321 - 财政年份:2017
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of memory-saving high-speed graph mining method for graph grammar-compressed data
针对图语法压缩数据的节省内存的高速图挖掘方法的开发
- 批准号:
15K00313 - 财政年份:2015
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning of formal graph systems and its application to graph mining
形式化图系统的学习及其在图挖掘中的应用
- 批准号:
26280087 - 财政年份:2014
- 资助金额:
$ 3.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)