Minimum distance of error-correcting codes constructed by algebraic function fields

代数函数域构造的纠错码的最小距离

基本信息

  • 批准号:
    14540127
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

We performed the. research of algebraic geometry codes which are error-correcting codes constructed from algebraic function fields, and related researches in algebraic number theory, arithmetic algebraic geometry, algebraic geometry and algebraic combinatrics. The aim of this project is to construct algebraic geometry codes explicitly applying algebraic function fields and to determine their minimum distances, which are.important numbers for estimating their abilities of correcting errors.In the research of algebraic geometry codes, we determined the minimum distance d(C) of certain type of algebraic geometry codes C, called one-point algebraic geometry codes, in the first academic year. Speaking in detail, we proved that the minimum distance d(C) of a one-point algebraic geometry code C is equal to its Feng-Rao lower bound d' (C) if C'satisfies some conditions. In the second, academic year, we construct algebraic geometry codes other than of one-point type, and computed their Feng -Ra … More o lower bounds. As a result, we found some algebraic geometry codes whose Feng-Rao lower bound are larger than the corresponding codes of-one-point type.As a research in algebraic number theory, we investigated the class number and the structure of the unit groups for algebraic number fields of lower extension degree over the rationals, specifically for quartic number fields of Kummer extension. Also we concerned ourselves with the question whether the integer ring of an abelian field of degree 8 hasa power basis.As a research in arithmetic algebraic geometry, we constructed the Teichmueller groupoids in the category of arithmetic geometry, and we described the Galois action and the monodromy representation (associated with conformal field theory) on the Teichmueller groupoids. Furthermore we proved the Bogomolov conjecture which states that if an irreducible curve in an abelian variety is not, isomorphic to an elliptic curve, then its algebraic points are distributed uniformly discretely for the Neron-Tate height.As a research in algebraic geometry, we considered the problem to estimate the degree of the Chow variety oil-cycles of degree d in the n-th projective space, and investigated a connection between resultants, which are projective invariants, and some Hilbert polynomials.As a reaearch in algebraic combinatrics, we investigated a minimal free resolution of the Stanley-Reisnerring of a simplicial complex. In particular, we give an upper bound on the dimension of the Unique non-vanishing homology group of a Buchsbaum Stanley-Reisner ring with linear resolution. Less
我们进行了代数几何代码的研究,即由代数函数域构造的纠错代码,以及代数数论、算术代数几何、代数几何和代数组合方面的相关研究。该项目的目的是构造代数几何代码。显式代数函数域并应用于确定它们的最小距离,这是估计其纠正错误能力的重要数字。代数几何代码,我们确定了某类代数几何代码C的最小距离d(C),称为单点代数几何代码,详细地说,我们在第一学年证明了最小距离d(C)。如果C'满足某些条件,则单点代数几何代码C的值等于其Feng-Rao下界d'(C)。在第二学年,我们构造了除以下之外的代数几何代码。并计算了它们的Feng-Rao下界,结果发现一些代数几何代码的Feng-Rao下界大于相应的单点型代码。在代数数论中,我们研究了有理数上较低可拓度的代数数域的类数和单位群的结构,特别是库默尔可拓的四次数域,我们还关注了整数是否存在的问题。 8次阿贝尔域的环具有幂基。作为算术代数几何的研究,我们构造了算术几何范畴内的Teichmueller群群,并描述了Galois作用和单向表示(与共形场论相关)此外,我们还证明了博戈莫洛夫猜想,即如果阿贝尔簇中的不可约曲线不是,则同构于椭圆曲线,则其代数点对于 Neron-Tate 高度离散均匀分布。作为代数几何的研究,我们考虑了在 n 阶射影空间中估计 d 度 Chow 型石油循环度的问题,并研究了射影不变量的结果与一些希尔伯特多项式之间的联系。作为代数组合学的研究,我们研究了特别是,我们给出了具有较小线性分辨率的 Buchsbaum Stanley-Reisner 环的唯一非消失同调群的维数上限。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.I.-Katayama, C.Levesque, T.Nakahara: "On a family of real bicyclic biquadratic fields"Proceedings of the 2002 Canadian Number Theory Association Conference (Montreal), (H.Kisilevsky ed), AMS and CNC Proceedings. (to appear).
S.I.-Katayama、C.Levesque、T.Nakahara:“关于实双环双二次域系列”2002 年加拿大数论协会会议论文集(蒙特利尔),(H.Kisilevsky 编辑)、AMS 和 CNC 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shinichi Katayama: "On a family of real bicyclic biquadratic fields"Proceedings of the 2002 Canadian Number Theory Association Conference (Montreal),AMS and CNC Proceedings. To appear.
Shinichi Katayama:“On a family of real bicycling biquadratic fields”2002 年加拿大数论协会会议论文集(蒙特利尔)、AMS 和 CNC 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takashi Ichikawa: "Teichmueller groupoids and Galois action"J.Reine Angew.Math.. vol.559. 95-114 (2003)
Takashi Ichikawa:“Teichmueller 群群和伽罗瓦作用”J.Reine Angew.Math.. vol.559。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Hibi, H.Osugi, N.Terai: "Unmixed initial ideals and Caste inuovo-Mumford Regularity"Acta Mathematica Vietnamica. (to appear).
T.Hibi、H.Osugi、N.Terai:“未混合的初始理想和种姓 inuovo-Mumford 规则”越南数学学报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hyeong-Kee Song, Tsuyoshi Uehara: "On the Feng-Rao bound for the minimum distance of certain algebraic geometry codes"Kyushu J. Math.. 56. 405-418 (2002)
Hying-Kee Song、Tsuyoshi Uehara:“关于某些代数几何代码的最小距离的 Feng-Rao 界限”Kyushu J. Math.. 56. 405-418 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UEHARA Tsuyoshi其他文献

UEHARA Tsuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UEHARA Tsuyoshi', 18)}}的其他基金

Explicit construction of algebraic geometry codes
代数几何代码的显式构造
  • 批准号:
    18540038
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Congruence relations between class numbers of cyclotomic fields
分圆域类数之间的同余关系
  • 批准号:
    02640063
  • 财政年份:
    1990
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Topics in algebraic geometry codes
代数几何代码主题
  • 批准号:
    1403062
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
CIF: Small: List Decoding for Algebraic Geometry Codes: Theoretical Analysis, Efficient Algorithms, Practical Implementation
CIF:小:代数几何代码的列表解码:理论分析、高效算法、实际实现
  • 批准号:
    0916492
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Models of encoding and decoding via Grobner basis for algebraic geometry codes and multidimensional cyclic codes
基于 Grobner 基的代数几何码和多维循环码的编码和解码模型
  • 批准号:
    19760269
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Explicit construction of algebraic geometry codes
代数几何代码的显式构造
  • 批准号:
    18540038
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis of liner feedback shift register allowing give pairs of input and output arrays
线性反馈移位寄存器的综合允许给出输入和输出阵列对
  • 批准号:
    14550350
  • 财政年份:
    2002
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了