A research on noncommutative functional identities and their Geometry by deformation quantization

基于变形量化的非交换函数恒等式及其几何研究

基本信息

  • 批准号:
    21540096
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2009
  • 资助国家:
    日本
  • 起止时间:
    2009 至 2011
  • 项目状态:
    已结题

项目摘要

Star products are given by means of complex matrices, which are extension of typical star products in physics such as Moyal products. Jacobi theta functions are expressed by means of star exponential of linear functions, and fundamental identities are given by star product expressions. As an application of star exponentials of quadratic functions, we study the spectrum of MIC-Kepler problem in terms of star product algebra.
星积是通过复杂矩阵给出的,它是物理学中典型星积(例如Moyal积)的延伸。雅可比 theta 函数通过线性函数的星指数来表示,基本恒等式通过星积表达式给出。作为二次函数星指数的应用,我们用星积代数来研究 MIC-Kepler 问题的谱。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Star exponential calculus
星指数演算
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanenobu;Taizo;Toru Ohmoto;K. Kanno and K. Taniyama;Akira Yoshioka
  • 通讯作者:
    Akira Yoshioka
A family of star products and star exponentials
一系列明星产品和星指数
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanenobu;Taizo;Akira Yoshioka;山田拓身;Akira Yoshioka
  • 通讯作者:
    Akira Yoshioka
Star product and its application to the MIC-Kepler problem
明星产品及其在 MIC-Kepler 问题中的应用
Star Products and Theta Functions
明星产品和 Theta 函数
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    (3)Kanenobu;Taizo;H.Tamaru;小池直之;Akira Yoshioka
  • 通讯作者:
    Akira Yoshioka
Star Products and Application
明星产品及应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIOKA Akira其他文献

YOSHIOKA Akira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIOKA Akira', 18)}}的其他基金

Noncommutative functional identites with non formal deformation quantization and its application
非形式变形量化的非交换泛函恒等式及其应用
  • 批准号:
    24540097
  • 财政年份:
    2012
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A research on functional identitiesand noncommutative geometry bydeformation quantization
基于变形量子化的函数恒等式和非交换几何研究
  • 批准号:
    19540103
  • 财政年份:
    2007
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Noncommutative Geometry by deformation quantization
基于变形量化的非交换几何研究
  • 批准号:
    17540096
  • 财政年份:
    2005
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel antithrombotic strategy based on the functional regulation of factor VIII/VWF complex
基于VIII因子/VWF复合物功能调节的新型抗血栓策略
  • 批准号:
    17390304
  • 财政年份:
    2005
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Application of Deformation Quantization theory to Geometry and Mathematical Physics
形变量子化理论在几何与数学物理中的应用
  • 批准号:
    13640088
  • 财政年份:
    2001
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEFORMATION QUANTIZATION AND ITS APPLICATION
变形量化及其应用
  • 批准号:
    11640095
  • 财政年份:
    1999
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clinical and Biomolecular Studies on Thrombophilia in Children.
儿童血栓形成倾向的临床和生物分子研究。
  • 批准号:
    10470212
  • 财政年份:
    1998
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of hypoxic oligodendroglial injury
少突胶质细胞缺氧损伤的研究
  • 批准号:
    10670611
  • 财政年份:
    1998
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEFORMATION QUANTIZATION AND NONCOMMUTATIVE GEOMETRY
变形量化和非交换几何
  • 批准号:
    09640132
  • 财政年份:
    1997
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Immunological, Biological and Molecular Genetic Study on Prenatal Diagnosis of Hemophilia
血友病产前诊断的免疫学、生物学和分子遗传学研究
  • 批准号:
    63480239
  • 财政年份:
    1988
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

細胞膜変形分子マシンの動作メカニズム:多量体形成と構造変化による膜変形の理論研究
细胞膜变形分子机器的运行机制:多聚体形成和结构变化引起的膜变形的理论研究
  • 批准号:
    23K23858
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
標準量子限界を超える光計測に向けたパルススクイージングの極限性能の追求
追求超越标准量子极限的光学测量脉冲压缩的终极性能
  • 批准号:
    22KJ1078
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変形量子化の変換則と不変量およびその応用
变形量化的变换规则和不变量及其应用
  • 批准号:
    22K03321
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
二次元線形アンテナアレイのための効果的な協調量子化の実現
实现二维线性天线阵列的有效协同量化
  • 批准号:
    22K04090
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
層量子化の幾何学と代数解析学
层量化的几何和代数分析
  • 批准号:
    22K13912
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了