Research on Schottky spaces and Jorgensen groups
肖特基空间和乔根森群的研究
基本信息
- 批准号:12640168
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied the following four themes from 2000 to 2001. 1. Jorgensen groups. 2. Jorgensen numbers of Classical Schottky spaces of real type. 3. The Picard group. 4. The Whitehead link.1. J0rgensen groups. A Jorgensen group is a discrete group whose Jorgensen number is one. First we considered two one-parameter families. The results appeared in Contemporary Mathematics in 2000. Furthermore we studied Jorgensen groups of parabolic type. We talked the results at the Meeting of AMS (UCLA, 2000) and at the International Coference of Complex Analysis (China, 2000). Recently we found almost all Jorgensen groups of parabolic type. We talked about the results at the Meeting of Discontinuous Groups at Shizuoka University (January, 2002 and the Geometry and Topology Seminar at University of Oregon in March, 2002.2. Jorgensen numbers of Classical Schottky space of real type. We found the best lower bounds for all kinds of the classical Schottky spaces of real type. The results appeared in J. Math. Soc. Japan in 2001.3. The Picard group. We have appointed out before that the Picard group is a two-generator group. This time we constructed a new fundamental region for the group and we found eight relations by using the fundamental region. We talked this result at the ISAAC Congress in Berlin in 2001. The result will appear in the Proceedings.4. The Whitehead link. We proved that the Jorgensen number of the Whitehead link is two. Therefore the Whitehead link is not a Jorgensen group. We talked the result at Kyoto University in 2001. We will talk this result at the internatonal conference in 2002.
从2000年到2001年,我们研究了以下四个主题。 1. Jorgensen群。 2.实型经典肖特基空间的乔根森数。 3. 皮卡德小组。 4. 怀特海链接。1.约根森团体。乔根森群是乔根森数为 1 的离散群。首先我们考虑两个单参数族。结果发表在 2000 年的《当代数学》上。此外,我们研究了抛物线型的乔根森群。我们在 AMS 会议(加州大学洛杉矶分校,2000 年)和国际复杂分析会议(中国,2000 年)上讨论了这些结果。最近我们发现几乎所有的约根森群都是抛物线型的。我们在静冈大学不连续群会议(2002年1月)和2002年3月俄勒冈大学几何与拓扑研讨会上讨论了结果。2.实型经典肖特基空间的约根森数。我们找到了最佳下界各种经典的实型肖特基空间,结果发表于 J. Math. Japan 2001.3。我们之前已经指定Picard群是一个二元群,这次我们为该群构建了一个新的基本域,并利用这个基本域找到了八个关系,我们在柏林的ISAAC大会上讨论了这个结果。 2001年,该结果将发表在论文集上。 4.怀特海链接我们证明了怀特海链接的乔根森数是二,因此怀特海链接不是乔根森群我们在京都大学讨论了这个结果。 2001年。我们将在2002年的国际会议上谈论这个结果。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshihide Okumura: "Lifting problem and its application to Riemann surfaces"Proc. Eighth Inter. Conf. on Complex Analysis. 173-178 (2001)
Yoshihide Okumura:“提升问题及其在黎曼曲面上的应用”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato: "Jorgensen's inequality for classical Schottky groups of real type, II"J. Math. Soc. Japan. 53. 791-811 (2001)
Hiroki Sato:“实型经典肖特基群的约根森不等式,II”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Sato: "Jorgensen's inequality for classical Schottky groups of real type,II"J.Math.Soc.Japan. 53. 791-811 (2001)
Hiroki Sato:“实型经典肖特基群的约根森不等式,II”J.Math.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Akutagawa: "An obstraction to the positivity of relative Yamabe invariants"Math. Z.. (to appear). (2002)
芥川一夫:“对相对山边不变量的积极性的阻碍”数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihide Okumura: "Lifting problem and its application to Riemann surfaces"Proc.Eighth International Conference on Complex Analysis. (2001)
Yoshihide Okumura:“提升问题及其在黎曼曲面上的应用”Proc.第八届国际复分析会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATO Hiroki其他文献
Development of Spatiotemporal Measurement and Analysis Techniques in X-ray Photoelectron Spectroscopy ∼From NAP-HARPES to 4D-XPS∼
X射线光电子能谱<i>时空</i>测量和分析技术的发展〜从NAP-HARPES到4D-XPS〜
- DOI:
10.1380/vss.64.86 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
TOYODA Satoshi;YAMAMOTO Tomoki;YOSHIMURA Masashi;SUMIDA Hirosuke;MINEOI Susumu;MACHIDA Masatake;YOSHIGOE Akitaka;SUZUKI Satoru;YOKOYAMA Kazushi;OHASHI Yuji;KUROSAWA Shunsuke;KAMADA Kei;SATO Hiroki;YAMAJI Akihiro;YOSHINO Masao;HANADA Takashi;YOKOTA Yuui;YO - 通讯作者:
YO
Genomic medicine for the early detection of pancreatic cancer
早期检测胰腺癌的基因组医学
- DOI:
10.2958/suizo.37.29 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
SATO Hiroki;TAKAHASHI Kenji;MIZUKAMI Yusuke - 通讯作者:
MIZUKAMI Yusuke
Development of Spatiotemporal Measurement and Analysis Techniques in X-ray Photoelectron Spectroscopy ∼From NAP-HARPES to 4D-XPS∼
X射线光电子能谱<i>时空</i>测量和分析技术的发展〜从NAP-HARPES到4D-XPS〜
- DOI:
10.1380/vss.64.86 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
TOYODA Satoshi;YAMAMOTO Tomoki;YOSHIMURA Masashi;SUMIDA Hirosuke;MINEOI Susumu;MACHIDA Masatake;YOSHIGOE Akitaka;SUZUKI Satoru;YOKOYAMA Kazushi;OHASHI Yuji;KUROSAWA Shunsuke;KAMADA Kei;SATO Hiroki;YAMAJI Akihiro;YOSHINO Masao;HANADA Takashi;YOKOTA Yuui;YO - 通讯作者:
YO
Genomic medicine for the early detection of pancreatic cancer
早期检测胰腺癌的基因组医学
- DOI:
10.2958/suizo.37.29 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
SATO Hiroki;TAKAHASHI Kenji;MIZUKAMI Yusuke - 通讯作者:
MIZUKAMI Yusuke
Liquid biopsy of pancreatic tumors: Challenges for early detection and surveillance based on the molecular landscape during early carcinogenesis
胰腺肿瘤的液体活检:基于早期癌变过程中分子景观的早期检测和监测的挑战
- DOI:
10.2958/suizo.35.302 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
OKADA Tetsuhiro;MIZUKAMI Yusuke;HAYASHI Akihiro;KAWABATA Hidemasa;SATO Hiroki;KAWAMOTO Toru;GOTO Takuma;TANIUE Kenzui;ONO Yusuke;KARASAKI Hidenori;OKUMURA Toshikatsu - 通讯作者:
OKUMURA Toshikatsu
SATO Hiroki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATO Hiroki', 18)}}的其他基金
Development of a neurophysiological "choking under pressure" index and its application to neurofeedback training
神经生理学“压力窒息”指数的开发及其在神经反馈训练中的应用
- 批准号:
20K11367 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on the Function and Role of "Lifelong Career Guidance" in Denmark
丹麦“终身职业指导”的功能与作用研究
- 批准号:
18K13071 - 财政年份:2018
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Employment Externalization and Strategic Human Resource Management
就业外部化与战略人力资源管理
- 批准号:
22330110 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential mechanism of HDACI induct cell cycle arrest, apoptosis and differentiation between B-precursor and T-lineage leukemia cells
HDACI诱导B前体和T系白血病细胞周期阻滞、凋亡和分化的差异机制
- 批准号:
20790722 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
- 批准号:
20790351 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on Schottky groups and Jorgensen numbers
肖特基群和约根森数的研究
- 批准号:
19540178 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Jorgensen groups and Schottky spaces
约根森群和肖特基空间的研究
- 批准号:
14540170 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of rock microtectonics and anisotropy
岩石微构造和各向异性分析
- 批准号:
12640467 - 财政年份:2000
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Schottky groups and Schottky spaces
肖特基群和肖特基空间研究
- 批准号:
10640158 - 财政年份:1998
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assembler-Supplier Relationships in Japan: Past and Present
日本的装配商与供应商关系:过去和现在
- 批准号:
09430007 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
New construction of vector bundles on Riemann surfaces and Verlinde's formula
黎曼曲面上向量丛的新构造及Verlinde公式
- 批准号:
18540039 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Jorgensen groups and Schottky spaces
约根森群和肖特基空间的研究
- 批准号:
14540170 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Uniaxial and Hydrostatic Stress on Group III-nitride Heterojunctions and Schottky Barriers
III 族氮化物异质结和肖特基势垒的单轴应力和静水应力
- 批准号:
0140164 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Asymptotic structures of non-compact hyperbolic 3-manifoIds and differential geometry
非紧双曲3-流形的渐近结构和微分几何
- 批准号:
12640063 - 财政年份:2000
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Schottky groups and Schottky spaces
肖特基群和肖特基空间研究
- 批准号:
10640158 - 财政年份:1998
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)