Study of Analysis on Manifolds

流形分析研究

基本信息

  • 批准号:
    20540218
  • 负责人:
  • 金额:
    $ 2.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2008
  • 资助国家:
    日本
  • 起止时间:
    2008 至 2010
  • 项目状态:
    已结题

项目摘要

Mainly we focused our study on the topics on analytic and geometric aspects of sub-Riemannian manifolds. Our sub-Riemannian manifolds are in the strong sense, that is、the sub-Riemannian structure is defined by a non-holonomic sub-bundle which is trivial as a vector bundle. So we have a sub-elliptic operator on such manifolds, which we call sub-Laplacian. Examples of such manifolds are three and seven dimensional spheres, or nilmanifolds and we studied their spectral zeta functions from the point of views of analytic continuation, residue calculus and the explicit determination of zeta regularized determinant. Also, we investigate a general framework to define a sub-elliptic operator from a sub-Laplacian on the total space to the base manifold through a submersion (or more specifically fiber bundle setting) and obtained a relation between their bi-characteristic flows. Especially we find a relation between sub-Riemannian geodesics on S^3 through Hopf fiber bundle S^3→CP^1 by notifying their relation with the isoperimetric aspect of curves on CP^1 and by considering double fiberings defined by left and right quaternion multiplication structure on S^3, we determine bi-characteristic flow of the spherical Grushin operator.
我们主要将研究重点放在亚军歧管的分析和几何方面的主题上。我们的亚riemannian歧管在很强的意义上,也就是说,亚riemannian的结构是由非全面的子束定义的,该子束微不足道,这是矢量束。因此,我们在这种歧管上有一个亚椭圆形操作员,我们称之为亚拉普拉斯。这种歧管的例子是三维球或尼尔曼叶夫,我们从分析延续,退休演算的观点和定期确定Zeta的明确确定的观点的观点来敲定它们的光谱Zeta函数。此外,我们研究了一个通用框架,以通过累积(或更具体地说是纤维束设置)从总空间上的亚拉普拉斯定义亚椭圆形操作员,并获得了双性表征流之间的关系。 Especially we find a relationship between sub-Riemannian geodesics on S^3 through Hopf fiber bundle S^3→CP^1 by notifying their relationship with the isoperimetric aspect of curves on CP^1 and by considering double fiberings defined by left and right quaternion multiplication structure on S^3, we determine bi-characteristic flow of the spherical Grushin operator.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantization operators on Quadrics
Quadric 上的量化运算符
Spectral Analysis and Geometry of a sub-Laplacian and related Grushin type operators
亚拉普拉斯及相关 Grushin 型算子的谱分析和几何
Zeta-regularized determinant of product manifolds and Kronecker's second limit formula
乘积流形的 Zeta 正则行列式和克罗内克第二极限公式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Sato;F. Takahashi;古谷賢朗
  • 通讯作者:
    古谷賢朗
Heat kernel of a sub-Laplacian and Grushin type operators
子拉普拉斯算子和 Grushin 算子的热核
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Ishiwata;T.Ogawa;F.Takahashi;古谷賢朗
  • 通讯作者:
    古谷賢朗
Hilbert-Schmidt Operators and Berezin Ieerations
Hilbert-Schmidt 算子和 Berezin 迭代
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Grossi;F.Takahashi;W. Bauer K. Furutani;F.Takahashi;W. Bauer K. Furutani;W. Bauer K. Furutani
  • 通讯作者:
    W. Bauer K. Furutani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FURUTANI Kenro其他文献

FURUTANI Kenro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FURUTANI Kenro', 18)}}的其他基金

Study of Analysis on Manifolds
流形分析研究
  • 批准号:
    13640222
  • 财政年份:
    2001
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of Analysis on manifolds
流形分析研究
  • 批准号:
    10640214
  • 财政年份:
    1998
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

From elliptic operators to sub-elliptic operators
从椭圆算子到次椭圆算子
  • 批准号:
    20K03662
  • 财政年份:
    2020
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Analysis on Manifolds
流形分析研究
  • 批准号:
    23540251
  • 财政年份:
    2011
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The twistor correspondence between different geometric structures and its application
不同几何结构之间的扭量对应关系及其应用
  • 批准号:
    11640097
  • 财政年份:
    1999
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了