Representations of real reductive Lie groups

实数还原李群的表示

基本信息

  • 批准号:
    10640153
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

In this academic year, I have been studied mainly on degenerate principal series of real reductive Lie groups and obtained the following. We consider a maximal parabolic subgroup of SO(m, n) (resp. U(m, n)) such that its Levi part is isomorphic to SO(m - n) x GL(n,R) (resp. U(m - n) x GL(n, C)). We consider the representations of SO(m, n) (resp, U(m, n)) induced from the representations of the parabolic subgroup coming from irreducible finite-dimensional representations of SO(m - n) (resp. U(m - n))) and one-dimensional representation of GL(n, R) (resp. GL(n, R)). In the last academic year, I found a reducibility of the representation obtained by considering the restriction to SO(m, l) (resp. U(m, 1)). In this year, I obtained an irreducibilty result. For the case of U(m, n) and the "sufficitintly" positive case" of SO(m, n), there is no reducibility other than the above. For the case of SO(m, n), the situation is quite subtle. In fact, Farmar had found an extra reducibility at the most singular parameter for the case of SO(3, 2).Our reducibility is described in terms of K-type decomposition of the degenerate principal series. It is compatible with the restriction tosmaller SO(m, k) (k < n) and we can obtain branching rule of some derived functor modules which appear as irreducible constituents.
本学年,我主要研究了实还原李群的简并主级数,得到了以下结论。我们考虑 SO(m, n)(分别为 U(m, n))的最大抛物线子群,使其列维部分同构于 SO(m - n) x GL(n,R)(分别为 U(m) - n) x GL(n, C))。我们考虑由来自 SO(m - n) 的不可约有限维表示的抛物线子群的表示导出的 SO(m, n) (分别为 U(m, n)) 的表示(分别为 U(m - n))) 和 GL(n, R) 的一维表示(分别为 GL(n, R))。在上一学年,我发现通过考虑对 SO(m, l)(分别是 U(m, 1))的限制所获得的表示的可还原性。今年,我得到了不可约的结果。对于 U(m, n) 的情况和 SO(m, n) 的“足够”正的情况”,除上述之外没有其他可约性。对于 SO(m, n) 的情况,情况相当事实上,Farmar 在 SO(3, 2) 的情况下发现了在最奇异参数处的额外可归约性。我们的可归约性是用简并主级数的 K 型分解来描述的,它与限制相兼容。到更小的 SO(m, k) (k < n),我们可以获得一些作为不可约成分出现的派生函子模块的分支规则。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATUMOTO Hisayosi其他文献

MATUMOTO Hisayosi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATUMOTO Hisayosi', 18)}}的其他基金

Study of homomorphisms between generalized Verma modules
广义Verma模之间的同态研究
  • 批准号:
    26400006
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of generalized Verma modules
广义Verma模块的研究
  • 批准号:
    20540011
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of the representation theoretical aspect of generalized flag varieties
广义旗品种代表性理论研究
  • 批准号:
    18540162
  • 财政年份:
    2006
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Unitary representations of reductive p-adic groups: an algorithm
还原 p 进群的酉表示:一种算法
  • 批准号:
    EP/V046713/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
  • 批准号:
    3176-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
  • 批准号:
    3176-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Development of new wavelets from unitary circuit representations
从酉电路表示中开发新的小波
  • 批准号:
    505898-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of new wavelets from unitary circuit representations
从酉电路表示中开发新的小波
  • 批准号:
    505898-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了