Self-avoiding walk and its continuum'limit on fractals and geometric figures defined by conformal mappings
共形映射定义的分形和几何图形的自回避行走及其连续体极限
基本信息
- 批准号:09640255
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) We dealt with the continuum limits of self-avoiding walks on fractals and studied geometric properties of their sample paths. The trajectory of a sample path is regarded as a multi-type random construction. We first developed a general theorem on the 'exact Hausdorff dimension' for a wide class of multi-type random constructions.Our general theorem deals with multi-type random constructions with almost sure Hausdorff dimension D (usually, Hausdorff dimensions of random constructions are determined almost surely) and with zero D-dimensional Hausdorff measure. It determines dimension functions which give positive and finite Hausdorff measures, which we call exact Hausdorff dimensions, for a wide class of constructions.As an application of this theorem, we considered a model of self-avoiding walk called the 'branching model' on the d-dimensional Sierpinski gasket. We showed the existence of the continuum limit and then determined the exact Hausdorff dimensions.(2) We considered anisot … More ropic diffusions on the 2-dimensional Sierpinski carpet, which is an infinite-ramified fractal, and showed that the isotropy is asymptotically restored as the scale in which we see the diffusions gets larger. This can be shown in terms of restoration of isotropy of anisotropic resistance networks on the pre-Sierpinski carpet. This phenomenon of restoration of isotropy is unique and of interest in the sense that it does not happen in a homogenious space such as the Eucledian spaces, but occurs only in inhomogenious spaces such as fractals.Using Grant-in-Aid, we bought books on fractals, Hausdorff measures, probability theory, ergodic theory etc, and also computer software to be used for electronic communication and writing papers.The Grant also enabled us to meet in person researchers in close fields to discuss and collect information on random constructions, Hausdorff and Packing measures of geometic figures constructed using conformal mappings, which helped us much get insight and hints for future developments of our research. Less
(1) 我们处理了分形上自回避游走的连续体极限,并研究了其样本路径的几何性质。我们首先提出了关于“的”的一般定理。精确的豪斯多夫维数'对于广泛的多类型随机构造。我们的一般定理处理具有几乎确定的豪斯多夫维数 D 的多类型随机构造(通常,随机构造的豪斯多夫维数几乎确定当然),并且具有零 D 维豪斯多夫测度。它确定了给出正且有限的豪斯多夫测度的维数函数,我们将其称为精确豪斯多夫维数,对于广泛的构造。作为该定理的应用,我们考虑了自我模型。 -避免游走称为d维Sierpinski垫片上的“分支模型”我们证明了连续极限的存在,然后确定了精确的Hausdorff维数。(2)我们考虑了。二维谢尔宾斯基地毯上的各向异性扩散,这是一个无限分支的分形,并且表明,随着我们看到扩散的尺度变大,各向同性逐渐恢复,这可以通过恢复来证明。前谢尔宾斯基地毯上各向异性电阻网络的各向同性 这种各向同性恢复的现象是独特的并且令人感兴趣,因为它不会发生在同质中。我们利用补助金购买了分形、豪斯多夫测度、概率论、遍历理论等方面的书籍,以及用于电子通信的计算机软件这笔资助还使我们能够与密切领域的研究人员会面,讨论和收集有关随机构造、豪斯多夫和使用共形映射构造的几何图形的包装测量的信息,这对我们的研究的未来发展有很大帮助。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Inoue: "A stochastic model for a dam with non-additive input" Proceedings, of SAP'98.
K.Inoue:“具有非附加投入的大坝的随机模型”,SAP98 论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井上和行: "A stochastic model for a dam with non-additive input" Proceedings of SAP'98. (1999)
Kazuyuki Inoue:“非加性投入的大坝随机模型”SAP98 论文集(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井上和行: "A stochastic model for a dam with non-additive in put" Proceedings of SAP'98. (1999)
Kazuyuki Inoue:“非加性投入的大坝随机模型”SAP98 论文集(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Abe: "Volumes of compact symmetric spaces" Tokyo Math.Jour.20. 87-105 (1997)
K.Abe:“紧凑对称空间的体积”Tokyo Math.Jour.20。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井上和行: "非加法的な流入を伴うダムの確率過程" 統計数理研究所共同研究リポート. 109. 13-16 (1998)
Kazuyuki Inoue:“非加性流入水坝的随机过程”统计数学研究所联合研究报告。109. 13-16 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HATTORI Kumiko其他文献
HATTORI Kumiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HATTORI Kumiko', 18)}}的其他基金
Self-avoiding processes and self-repelling processes on fractals
分形上的自回避过程和自排斥过程
- 批准号:
16540101 - 财政年份:2004
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-avoiding walk on the high-dimensional Sierpinski gaskets and random trees
在高维谢尔宾斯基垫片和随机树上自回避行走
- 批准号:
11640110 - 财政年份:1999
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2018
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2018
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2017
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2017
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2016
- 资助金额:
$ 1.98万 - 项目类别:
Discovery Grants Program - Individual