Combinatorial Studies of Demazure Modules
Demazure 模块的组合研究
基本信息
- 批准号:09640034
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The affine Lie algebra is of great importance in mathematical physics. We investigate representation theory of affine Lie algebras (or quantum affine algebras) from the combinatorial viewpoint.1. Demazure modules and pathsFor a quantum affine algebra there exist perfect crystals, and the crystal base of an integrable repre-sentation is described by the semi-infinite tensor product of perfect crystals (path). On the other hand, there also exists a Demazure module, which can be thought of as a finite truncation of the integrable representation. We presented a criterion for the Demazure module to have the tensor product structure in general setting. We also checked that this criterion is satisfied for almost all known perfect crystals.2. Fermionic formulaAn expression without minus sign of the affine Lie algebra character is sometimes called fermionic formula. We proved such fermionic formulae for the string and branching function when the affine Lie algebra is of type A and the highest weight of the representation is lALAMBDA_0. We also conjectured fermionic formulae of one dimensional configuration sums of classically restricted paths for an arbitrary untwisted affine Lie algebra. It is an important open problem to prove them.3. Solvable lattice modelsKuniba et al. considered a solvable vertex model of type A and performed the spectral decomposition of its corner transfer matrix. They also derived an integral equation for the transverse, longitudinal correlation length for the XXZ model at q a root of unity via quantum transfer matrix method.4. Nearly-integrable systemsOgawa considered an equation with perturbation effect from the KdV equation. To understand theoretically the selectivity of wave numbers, he used the eigenfunctions of periodic traveling wave solutions for the KdV equation, and determined the spectra of the wave numbers by perturbative calculation.
仿射李代数在数学物理中非常重要。我们从组合的角度研究了仿射李代数(或量子仿射代数)的表示论。 1. Demazure 模块和路径对于量子仿射代数,存在完美晶体,并且可积表示的晶体基础由完美晶体的半无限张量积(路径)来描述。另一方面,还存在 Demazure 模块,它可以被认为是可积表示的有限截断。我们提出了 Demazure 模块在一般设置下具有张量积结构的标准。我们还检查了几乎所有已知的完美晶体都满足这个标准。2.费米子公式 仿射李代数特征没有负号的表达式有时称为费米子公式。当仿射李代数为A型且表示的最高权重为lALAMBDA_0时,我们证明了弦函数和分支函数的费米子公式。我们还猜想了任意非扭曲仿射李代数的经典限制路径的一维构型和的费米子公式。证明它们是一个重要的悬而未决的问题。 3.可解晶格模型Kuniba 等人。考虑 A 型可解顶点模型并对其角转移矩阵进行谱分解。他们还通过量子转移矩阵法推导了单位根q处XXZ模型横向、纵向相关长度的积分方程。 4.近可积系统小川从 KdV 方程考虑了一个具有扰动效应的方程。为了从理论上理解波数的选择性,他利用KdV方程的周期行波解的本征函数,并通过微扰计算确定了波数的谱。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.N.Kirillov,A.Kuniba,T.Nakanishi: "Skew Young diagram method in spectral decomposition of integrable lattice models." Commun.Math.Phys.185. 441-465 (1997)
A.N.Kirillov、A.Kuniba、T.Nakanishi:“可积晶格模型谱分解中的斜杨图方法。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nakashima an A.Zelevinsky: "Polyhedral Realizations of Crystal Bases for Quantized Kac-Moody Algebras" Advances in Mathematics. 131. 253-278 (1997)
T.Nakashima 和 A.Zelevinsky:“量子化 Kac-Moody 代数晶体基的多面体实现”数学进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Kuniba, K.C.Misra, M.Okado, T.Takagi and J.Uchiyama: "Crystals for Demazure modules of classical affine Lie algebras" J.of Alg.208. 185-215 (1998)
A.Kuniba、K.C.Misra、M.Okado、T.Takagi 和 J.Uchiyama:“经典仿射李代数 Demazure 模的晶体”J.of Alg.208。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Kuniba,K.C.Misra,M.Okado,J.Uchiyama: "Demazure modules and perfect crystals." Commun.Math.Phys.192. 555-567 (1998)
A.Kuniba、K.C.Misra、M.Okado、J.Uchiyama:“Demazure 模块和完美晶体。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Hatayama, A.N.Kirillov, A.Kuniba, M.Okado, T.Takagi and Y.Yamada: "Character formulae of sln-modules and inhomogeneous paths." Nucl.Phys.B536[PM]. 575-616 (1998)
G.Hatayama、A.N.Kirillov、A.Kuniba、M.Okado、T.Takagi 和 Y.Yamada:“sln 模和非齐次路径的特征公式。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKADO Masato其他文献
OKADO Masato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKADO Masato', 18)}}的其他基金
New developments in the study of quantum groups
量子群研究新进展
- 批准号:
19K03426 - 财政年份:2019
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approach to the polynomials related to representation theory from quantum integrable systems
量子可积系统表示论相关多项式的探讨
- 批准号:
23654007 - 财政年份:2011
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies of the algebraic and combinatorial structures related to quantum integrable systems
与量子可积系统相关的代数和组合结构的研究
- 批准号:
23340007 - 财政年份:2011
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation Theory of Quantum Groups and Integrable Systems
量子群与可积系统的表示论
- 批准号:
20540016 - 财政年份:2008
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable Systems and Combinatorial Representation Theory
可积系统和组合表示理论
- 批准号:
18540030 - 财政年份:2006
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial Study of Crystal Bases and its Application to Discrete Integrable Systems
晶体基的组合研究及其在离散可积系统中的应用
- 批准号:
14540026 - 财政年份:2002
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affine Lie algebra characters and Bethe Ansatz
仿射李代数字符和 Bethe Ansatz
- 批准号:
11640027 - 财政年份:1999
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)