Generalizations of Weierstrass-type representation formula and their applications to theory of surface with singularities
Weierstrass型表示公式的推广及其在奇点曲面理论中的应用
基本信息
- 批准号:18340019
- 负责人:
- 金额:$ 5.59万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2008
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Properties of certain classes of surfaces with singularities are investigated with Weirstrass-type representation formula. For example, global behavior of flat fronts, and behavior of singularities of maximal surfaces in Lorentz-Minkowski 3-space and mean curvature one surfaces in de Sitter 3-space are investigated.On the other hand, as a general theory of differential geometry of singularities, a notion of singular curvature of the singular points of wave fronts is defined, and Gauss-Bonnet type formulas are obtained.
通过堰型型表示公式研究了某些具有奇异性的表面的特性。例如,研究了lorentz-minkowski 3空间中最大表面的奇异性的全球行为,以及平均曲率和平均曲率的奇异性行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyperbolic Schwarz map for the hypergeometric differential equation
超几何微分方程的双曲 Schwarz 图
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T. Sasaki;K. Yamada;M. Yoshida
- 通讯作者:M. Yoshida
Flat fronts in hyperbolic 3-space
- DOI:10.2140/pjm.2004.216.149
- 发表时间:2003-01
- 期刊:
- 影响因子:0.6
- 作者:M. Kokubu;M. Umehara;Kotaro Yamada
- 通讯作者:M. Kokubu;M. Umehara;Kotaro Yamada
Confluence of swallowtail singularities of the hyperboic Schwarz map defined by the hypergeometric differential equation
超几何微分方程定义的双曲Schwarz图燕尾奇点的汇合
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:M. Noro;T. Sasaki;K. Yamada;M. Yoshida
- 通讯作者:M. Yoshida
Spacelike mean curvautre one surfaces in de Sitter 3-space
德西特 3 空间中的类空间平均曲率一曲面
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Behavior of corank one singular points on weve fronts
软木塞在编织面上的一个奇点的行为
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:K. Saji;M. Umehara and K. Yamada
- 通讯作者:M. Umehara and K. Yamada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMADA Kotaro其他文献
Isometric realization of cross caps as formal power series and its applications
形式幂级数交叉帽的等距实现及其应用
- DOI:
10.14492/hokmj/1550480642 - 发表时间:
2019 - 期刊:
- 影响因子:0.5
- 作者:
HONDA Atsufumi;NAOKAWA Kosuke;UMEHARA Masaaki;YAMADA Kotaro - 通讯作者:
YAMADA Kotaro
関数を熱流で流すと曲率が見える
当热量流过函数时可以看到曲率
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
HONDA Atsufumi;NAOKAWA Kosuke;UMEHARA Masaaki;YAMADA Kotaro;尾國 新一;Shouhei Honda;Kanako Oshiro;Shin-ichi Oguni;栗原大武;本多正平 - 通讯作者:
本多正平
YAMADA Kotaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMADA Kotaro', 18)}}的其他基金
Weierstrass-type representation formulas and their application to surfaces with singularities
Weierstrass型表示公式及其在奇点曲面上的应用
- 批准号:
21340016 - 财政年份:2009
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Generalizations of Weierstrass-type representation formulae and applications
Weierstrass型表示公式的推广及应用
- 批准号:
14340024 - 财政年份:2002
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of submanifold with constant mean curvature, and its applications
常平均曲率子流形的构造及其应用
- 批准号:
10440024 - 财政年份:1998
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
相似海外基金
ワイエルストラス表現公式の類似と特異点における延長問題
Weierstrass表示公式与奇点处可拓问题的相似性
- 批准号:
23K22392 - 财政年份:2024
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analogues of the Weierstrass representation formula and extension problem of submanifolds at their singularities
Weierstrass 表示公式的类似物和奇点处子流形的可拓问题
- 批准号:
22H01121 - 财政年份:2022
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global properties of minimal surfaces in Euclidean space and zero mean curvature surfaces in Minkowski space
欧几里得空间中最小曲面和闵可夫斯基空间中零平均曲率曲面的全局性质
- 批准号:
17K05219 - 财政年份:2017
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
リー球面幾何学内のワイエルストラス型表現公式の研究
李球几何中Weierstrass型表示公式的研究
- 批准号:
15F15775 - 财政年份:2015
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Surfaces with singularities in space-times and Weierstrass-type representation formulas
时空奇点表面和Weierstrass型表示公式
- 批准号:
26400066 - 财政年份:2014
- 资助金额:
$ 5.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)