Mathematical Theory of Nonlinear-Non-equilibrium Reaction-Diffusion Systems

非线性非平衡反应扩散系统的数学理论

基本信息

  • 批准号:
    18104002
  • 负责人:
  • 金额:
    $ 45.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2010
  • 项目状态:
    已结题

项目摘要

Reaction diffusion equations already appeared as mathematics models which described population genetics, ecology and so on from the early 20^<th> century, and the qualitative study was performed in the world of mathematics. In the late 20^<th> century, there was a great breakthrough in sciences, that is, nonlinear non-equilibrium science and reaction diffusion equations appeared in natural ecienc such as physics, chemistry, biology and other fields, as mathematics models describing various nonlinear non-equilibrium phenomena. Thus, the study of reaction diffusion system has been pushed forward not only in mathematics but also in widely natural sciences. The result in this study was able to establish the analytical technique of spatio-temporal patterns arising in reaction diffusion equations from viewpoints of mathematics and applied mathematics for mathematical elucidation of the nonlinear-non-equilibrium phenomenon. As examples, there are (1) the construction of "the invariant manifold theory of infinite dimension dynamical systems" to handle pattern dynamics appearing as dissipative structure and self-organization, (2) the construction of "analytical theory of transient pattern dynamics" to understand the transition process from a simple pattern to a complex one, which is a typical nonlinear-non-equilibrium phenomenon, and (3) the construction of "the singular limit theory" to understand complex dynamic patterns and stationary forms in nonlinear non-equilibrium systems. These results enable us to mathematically understand spatio-temporal patterns in nonlinear non-equilibrium systems.
反应扩散方程已经显示为数学模型,描述了20个世纪初期的人口遗传学,生态学等,而定性研究是在数学领域进行的。在20个世纪后期,科学的突破很大,也就是说,非线性的非平衡科学和反应扩散方程出现在自然环保中,例如物理学,化学,生物学和其他领域,如数学模型,描述了描述各种非平衡现象的数学模型。因此,对反应扩散系统的研究不仅在数学中,而且在广泛的自然科学中都被推进了。这项研究的结果能够建立从数学观点和应用数学的反应扩散方程中产生的时空模式的分析技术,用于数学阐明非线性 - 非平衡现象。作为示例,有(1)构建“无限尺寸动态系统的不变流形理论”,以处理出现的模式动力学,以耗散性结构和自组织形式出现,(2)构建“瞬态模式动态的分析理论”,以理解从简单的模式到复杂的模式,这是一个典型的非线性 - 非线性的范围,这是一个典型的范围,这是一个典型的范围,这是一个典型的界限理论。非线性非平衡系统中的动态模式和固定形式。这些结果使我们能够在非线性非平衡系统中数学上了解时空模式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
フエーズフィールドモデルのおもしろさ
相场模型的有趣方面
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鷲見朗子;(鷲見克典と共同発表);平川均;伊藤秀史;Kaoru Ono;Hitoshi Hirakawa;小林亮
  • 通讯作者:
    小林亮
A free boundary problem arising in a simplified tumour growth model of contact inhibition
  • DOI:
    10.4171/ifb/233
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Bertsch, M.;Dal Passo, R.;Mimura, M.
  • 通讯作者:
    Mimura, M.
Pinned fronts in heterogeneous media of jump type
  • DOI:
    10.1088/0951-7715/24/1/007
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    P. van Heijster;A. Doelman;T. Kaper;Y. Nishiura;Kei-Ichi Ueda
  • 通讯作者:
    P. van Heijster;A. Doelman;T. Kaper;Y. Nishiura;Kei-Ichi Ueda
Dynamics of traveling pulses in heterogeneous media of jump type
跳跃型异质介质中行进脉冲的动力学
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryu;D.;H.;K. Ueda with Y. Nishiura and Y. Oyama
  • 通讯作者:
    K. Ueda with Y. Nishiura and Y. Oyama
Transient self-organized patterns in biological and chemical systems
生物和化学系统中的瞬态自组织模式
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maeda;K.;Hiroshi Ohta;小田淳一;平川均;松川陽介;M.Mimura;Kenji Fukaya;M. Mimura
  • 通讯作者:
    M. Mimura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIMURA Masayasu其他文献

MIMURA Masayasu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIMURA Masayasu', 18)}}的其他基金

Singular limit analysis for aggregation generated by random motion
随机运动产生聚合的奇异极限分析
  • 批准号:
    24654027
  • 财政年份:
    2012
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Mathematical Approach to Nonlinear-Non-equilibrium Phenomena - Understanding of Transient Spatio-temporal Patterns-
非线性非平衡现象的数学方法-瞬态时空模式的理解-
  • 批准号:
    15204006
  • 财政年份:
    2003
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of reaction-diffusion systems - Studies of singular limit methods -
反应扩散系统的开发 - 奇异极限方法的研究 -
  • 批准号:
    12304006
  • 财政年份:
    2000
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Visualization-system of spatio-temporal patterns in natural sciences
自然科学时空格局可视化系统
  • 批准号:
    63840001
  • 财政年份:
    1988
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research
Co-operative research for numerical analysis and applied analysis
数值分析和应用分析的合作研究
  • 批准号:
    61302008
  • 财政年份:
    1986
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Spatiotemporally developed self-propelled objects
时空发展的自驱动物体
  • 批准号:
    20H02712
  • 财政年份:
    2020
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical study on universality of critical behavior in solid plasticity with different deformation mechanisms
不同变形机制下固体塑性临界行为普适性的数值研究
  • 批准号:
    20K03783
  • 财政年份:
    2020
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancement of artificial systems based on nonlinearity
基于非线性的人工系统增强
  • 批准号:
    17KT0123
  • 财政年份:
    2017
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pattern formation using self-propelled motors which have high nonlinearity
使用具有高非线性的自走式电机形成图案
  • 批准号:
    17K05835
  • 财政年份:
    2017
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Oscillatory Motion of Collective Self-Propelled Particles
集体自航粒子的振荡运动
  • 批准号:
    16K05486
  • 财政年份:
    2016
  • 资助金额:
    $ 45.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了