Developments of applications of the double exponential transformation

双指数变换的应用进展

基本信息

  • 批准号:
    18560063
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

The double exponential formula was first proposed by H. Takahasi and M. Mori in order to evaluate definite integrals in high efficiency and has come to be used in various fields of science and technology. The basic idea for this formula comes from the double exponential transformation. In a former research project we developed several powerful numerical methods other than numerical integration by incorporating the double exponential transformation with the Slue function. This kind of methods is called the DE-Sine method. Specifically we applied the DE-Sine method to numerical computation of indefinite integrals and obtained methods of iterated integration and numerical solution of Voloterra integral equation. In the present research project we extended the idea of the double exponential transformation to develop numerical methods for boundary value problems and initial value problems which give results with very high precision by incorporating the DE-Sine method with the Galerkin method or with the collocation method. As a result we obtained a numerical Green's function method for boundary value problem of 2nd order ordinary differential equation, a method for numerical solution of boundary value problem of 4th order ordinary differential equation based on the Galerkin method, a method for numerical solution of integral equation with weakly singular kernel and a method for numerical solution of differential-algebraic equation. In particular by the present method for singularly perturbed problem we can obtain a numerical solution with very high accuracy without paying special care for the fact that the equation is of singular perturbation.
双指数公式最初由 H. Takahasi 和 M. Mori 为了高效地计算定积分而提出,并已被应用于科学技术的各个领域。该公式的基本思想来自于双指数变换。在之前的一个研究项目中,我们通过将双指数变换与 Slue 函数相结合,开发了除数值积分之外的几种强大的数值方法。这种方法称为 DE-Sine 方法。具体来说,我们将DE-Sine方法应用于不定积分的数值计算,得到了迭代积分和Voloterra积分方程数值求解的方法。在本研究项目中,我们扩展了双指数变换的思想,开发了边值问题和初值问题的数值方法,通过将 DE-Sine 方法与 Galerkin 方法或搭配方法相结合,给出了非常高精度的结果。得到了二阶常微分方程边值问题数值格林函数法、基于伽辽金法的四阶常微分方程边值问题数值求解方法、积分方程数值求解方法弱奇异核和微分代数方程的数值求解方法。特别是通过本方法对于奇异摄动问题,我们可以获得非常高精度的数值解,而无需特别注意方程是奇异摄动的事实。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DE-Sinc法に基づく3階常微分方程式の境界値問題の数値解法
基于DE-Sinc方法的三阶常微分方程边值问题的数值求解
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masatake;Mori;アヒニヤズ ヌルメメット
  • 通讯作者:
    アヒニヤズ ヌルメメット
Revisit to the characteristic function of the error of Numerical integration
再论数值积分误差的特征函数
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masatake;Mori
  • 通讯作者:
    Mori
Design of an optimal double exponential formula for integrals over the half infinite interval
半无限区间积分的最优双指数公式的设计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masatake;Mori
  • 通讯作者:
    Mori
DE-Sinc法に基づく3階常微分方程式の覧界値問題の数値解法
基于DE-Sinc方法的三阶常微分方程阈值问题的数值求解
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    アヒニヤズ ヌルメメット;森 正武
  • 通讯作者:
    森 正武
Numerical solution of differential-algebraic equations based on the DE-Sinc method
基于DE-Sinc方法的微分代数方程数值求解
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masatake;Mori;アヒニヤズ ヌルメメット;Masatake Mori
  • 通讯作者:
    Masatake Mori
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORI Masatake其他文献

MORI Masatake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORI Masatake', 18)}}的其他基金

Research on the double exponential formula for indefinite integrals
不定积分双指数公式的研究
  • 批准号:
    15607017
  • 财政年份:
    2003
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the double exponential transformation subroutine package
双指数变换子程序包的研究
  • 批准号:
    12640119
  • 财政年份:
    2000
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on visualization of the double exponential transformation
双指数变换的可视化研究
  • 批准号:
    09650077
  • 财政年份:
    1997
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Research on Anomalous Diffusion Problem
反常扩散问题的数学研究
  • 批准号:
    06650072
  • 财政年份:
    1994
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Co-operative Research of General Purpose FORTRAN Graphic Software System for Scientific Computation
通用FORTRAN科学计算图形软件系统合作研究
  • 批准号:
    05302028
  • 财政年份:
    1993
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Research on Algorithms for Numerical Computation by Supercomputer
超级计算机数值计算算法研究
  • 批准号:
    61540142
  • 财政年份:
    1986
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Geometry from the viewpoint of quantization and duality
量子化和对偶性角度的几何
  • 批准号:
    20K20877
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Geometric study of Galois representations
伽罗瓦表示的几何研究
  • 批准号:
    26247002
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Projective Algebraic Geometry in Positive Characteristic
正特征的射影代数几何
  • 批准号:
    25400053
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Time-Evolution Simulation of Shielding Current Density in High-Temperature Superconductor
高温超导体屏蔽电流密度的时间演化模拟
  • 批准号:
    17560245
  • 财政年份:
    2005
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the double exponential formula for indefinite integrals
不定积分双指数公式的研究
  • 批准号:
    15607017
  • 财政年份:
    2003
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了