Embedding structure of projective varieties and the initial ideal of their definig equations

射影簇的嵌入结构及其定义方程的初始理想

基本信息

  • 批准号:
    17540017
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

The Castelnuovo-Mumford regularity of a projective varierty X refrects its defining equations, generic initial ideal of defining ideal, and the Hilbert function of X. On the other hand, the regularity is expected to have a strong relation to the existence of multisecant lines to X. From this point of view, in this period, for an irreducible, projective variety X of degree d and codimension e, defined over an algebraically closed field, we study (I) multisecant lines to X; (II) hypersurfaces of small degree containing X. In (II), in particular, letting E(X) be the intersection of all hypersurfaces of degree at most d-e+1, containing X, we study if X = E(X) as an evidence of the regularity conjecture. Let B(X) be the points of outside of X, from which the projection of X is not birational onto its image. Similarly, let C(X) be the smooth points of X, from which the projection of X is not birational onto its image. We have the following results.(I-1) If X is smooth of sectional genus g, the length of the intersection of X and a line does not exceed d-e+1-g.(I-2) The length of the intersection of X and a line does not exceed d-e+1 if the projection of X from the line is quasi-finite.(II-1) As sets, X=E(X) outside of B(X), and as schemes, X=E(X) outside of B(X), C(X) and the singular locus Sing(X) of X.(II-2) The dimension of B(X) does not exceed the dimension of Sing(X) puls 1. Moreover, the dimension of C(X) does not exceed the dimension of Sing(X) plus 2.
投影型变化X的Castelnuovo-Mumford规律性重新定义方程式,一般的初始理想定义理想和X的希尔伯特功能。另一方面,从这个时期内,与IRRED的X型相比,预期的是,规律性与X的多样性相关,与X的范围相比,与X相比,X.字段,我们研究(i)X的多欧行; (ii)包含X的小度的高度曲面,特别是让e(x)是最多D-e+1度的所有程度性的交点,其中包含x,我们研究x = e(x)是否作为规律性猜测的证据。令b(x)为x外部的点,x的投影不是对其图像的依据。同样,令C(x)为x的平滑点,x的投影不是在其图像上的依据。我们有以下结果。(i-1)如果x是截面属G平的平滑,则x和一条线的相交的长度不超过d-e+1-g。(i-2)x和一条线的相交的长度不超过d-e+1的长度,如果x的投影从该行中的投影为quasi-finite。是quasi-finite。(ii-finite。(ii-1),如qii-finite。 B(X),C(X)和X的单位基因座(II-2)B(X)的尺寸不超过SING(x)puls 1的尺寸。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypersurfaces cutting out a projective varieity
超曲面切出射影多样性
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NOMA;Atsushi
  • 通讯作者:
    Atsushi
Very ample line bundles on regular surfaces obtained by projection
通过投影获得的规则表面上非常丰富的线束
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natsuo;Saito;齋藤 夏雄;廣門 正行;齋藤 夏雄;伊藤 浩行;廣門 正行;齋藤 夏雄;Atsushi NOMA
  • 通讯作者:
    Atsushi NOMA
Hypersurfaces cutting out a projective variety and the centers of nonbirational linear projections
超曲面切除射影变化和非双理线性投影的中心
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atsushi;NOMA
  • 通讯作者:
    NOMA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NOMA Atsushi其他文献

NOMA Atsushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NOMA Atsushi', 18)}}的其他基金

Defining ideals of projective varieities and their embedding structure
定义射影簇的理想及其嵌入结构
  • 批准号:
    20540039
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

裂缝性多孔介质流基于投影嵌入式离散裂缝模型的广义多尺度方法研究
  • 批准号:
    12301528
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The embedding structure, defining ideals and the projective m-normality of projective varieties
嵌入结构、定义理想和射影簇的射影 m-正态性
  • 批准号:
    17K05197
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The embedding structure, defining ideals and the projective m-normality of projective varieties
嵌入结构、定义理想和射影簇的射影 m-正态性
  • 批准号:
    26400041
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The embedding structure of projective varieties and their defining ideals
射影簇的嵌入结构及其定义理想
  • 批准号:
    23540043
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Defining ideals of projective varieities and their embedding structure
定义射影簇的理想及其嵌入结构
  • 批准号:
    20540039
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了