Accurate Analysis of Turbulence Dynamics using Unstable Periodic Flow

使用不稳定周期流精确分析湍流动力学

基本信息

  • 批准号:
    17340118
  • 负责人:
  • 金额:
    $ 10.29万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

Fluid mixing is one of the most prominent characteristics of turbulence. In order to understand the mixing dynamics and to develop a quantitative description of its statistical properties we performed the unstable-periodic-flow (UPF) analysis of the passive vectors advected in a Couette system. The unrepeatability of turbulence is one of the main causes which make the turbulence research difficult. In contrast the UPF discovered by Kawahara and Kida (2001), which has positive Lyapunof number, repeats exactly the same state for ever. Therefore, by using the UPF, we can calculate the statistics associated with flows as accurately as desired in proportion to the time devoted. We distribute many passive vectors in this UPF, and compare their stretching rate and orientation with the flow structures. It is found that those passive vectors which start at the same position but with different orientation, will align in direction in a finite time (of order of the period of UPF). This suggests th … More at the directional field of passive vectors may be uniquely defined as a function of the time and position of the UPF. We examine then how are those passive vectors that are distributed uniformly in space will rearrange as the time progresses. We divide the flow field into many small cubes, and calculate the statistics of the direction of passive vectors in each cube. The passive vectors are aligned in a line in most of the cubes. On the other hand, there are quite a few cubes in which the directions of passive vectors are aligned in a plane. We confirmed that such planes are parallel to the vorticity vector and that it is caused by the advection due to strong tubular vortices in the flow. The fluid mixing is enhanced around such places where the direction of passive vectors is diverse. The main organized structure in the Couette turbulence is the streamwise vortex, which creates the ejection and sweep regions near the wall boundary. The linear alignment of passive vectors is found in the interior of the streamwise vortices as well as in the ejection region. The planar distribution, on the other hand, is observed in the periphery of the streamwise vortices and in the sweep region. Such correspondence between the directional distribution of passive vectors and the flow structure depends on the near-past (between the present time and the past about a half of the period of UPF). The passive vectors lose their memory in the characteristic time of the turbulence. This is of essential importance in considering turbulence mixing and in developing turbulence model. Less
流体混合是湍流最突出的特征之一,为了了解混合动力学并对其统计特性进行定量描述,我们对库埃特系统中平流的被动矢量进行了不稳定周期流 (UPF) 分析。湍流的不可重复性是湍流研究困难的主要原因之一,而Kawahara和Kida(2001)发现的UPF具有正的Lyapunof。因此,通过使用 UPF,我们可以按照所需的时间比例准确地计算与流相关的统计数据,并比较它们的拉伸率。研究发现,那些从相同位置开始但方向不同的被动向量将在有限时间内(UPF 周期的数量级)对齐方向。无源矢量的方向场可以是唯一定义为 UPF 的时间和位置的函数,然后我们检查那些在空间中均匀分布的被动向量如何随着时间的推移重新排列。我们将流场划分为许多小立方体,并计算 的统计量。每个立方体中的被动向量的方向在大多数立方体中都排列在一条线上,另一方面,有相当多的立方体的被动向量的方向在一个平面上对齐。这些平面平行于涡度矢量,它是由流动中强烈的管状涡流引起的平流引起的,在被动矢量方向不同的地方,流体混合得到增强,库埃特湍流中的主要组织结构是流向涡流。另一方面,在流向涡流的内部以及喷射区域中发现了被动矢量的线性排列。另一方面,在流向涡流的外围和扫掠区域中观察到被动矢量的方向分布和流动结构之间的这种对应关系取决于近过去(当前时间和过去大约一半的周期)。 UPF 的)。被动矢量在湍流的特征时间中失去记忆,这对于考虑湍流混合和开发 Less 湍流模型至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Helical flow structure in a precessing sphere
进动球体中的螺旋流结构
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kida;K. Nakayama and N. Honda;S. Kida and K. Nakayama
  • 通讯作者:
    S. Kida and K. Nakayama
Persistent Stagnation Points and Turbulent Clustering of Inertial Particles
惯性粒子的持续驻点和湍流团聚
不安定周期流によるクエット乱流の混合解析
不稳定周期流引起的库埃特湍流的混合分析
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田谷貴男;木田重雄
  • 通讯作者:
    木田重雄
Laminarization of minimal plane Couette flow: Going beyond the basin of attraction of turbulence
最小平面库埃特流的层化:超越湍流吸引盆
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木田重雄;渡部 威;田谷貴男;L.van Veen;G. Kawahara
  • 通讯作者:
    G. Kawahara
Energy dissipation in spiral vortex layers wrapped around straight vortex tube
缠绕直涡流管的螺旋涡流层的能量耗散
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G.;Kawahara;河原源太;後藤 晋;渡部 威;木田重雄;L.Chen;S.Goto;J.C.Vassilicos;G.Kawahara;G.Kawahara
  • 通讯作者:
    G.Kawahara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIDA Shigeo其他文献

KIDA Shigeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIDA Shigeo', 18)}}的其他基金

Fundamental Properties of Flows in a Precessing Sphere
进动球内流动的基本性质
  • 批准号:
    24540416
  • 财政年份:
    2012
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistics of stretching of fluid lines and surfaces, and turbulent mixing
流体线和表面的拉伸以及湍流混合的统计
  • 批准号:
    14540385
  • 财政年份:
    2002
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure and Dynamics of Turbulent Elementary Vortices
湍流基本涡的结构和动力学
  • 批准号:
    12125204
  • 财政年份:
    2000
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Turbulent Elementary Votrices and New Development in Theory, Predicition, and control of Turbulence
湍流初等涡流及湍流理论、预测和控制的新进展
  • 批准号:
    12125101
  • 财政年份:
    2000
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Theree-dimensional dynamical structure of turbulence vortices Visualization and dynamics
湍流涡旋三维动力学结构可视化与动力学
  • 批准号:
    11837022
  • 财政年份:
    1999
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Mechanism of MHD dynamo-Toward Understanding of Geodynamo-
MHD发电机机理研究-了解地球发电机-
  • 批准号:
    07640532
  • 财政年份:
    1995
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Law and Energy Transfer Mechanism in Turbulence
湍流中的统计规律与能量传递机制
  • 批准号:
    03452053
  • 财政年份:
    1991
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Regulation of Metal Complexes by Ligands
配体对金属配合物的调节
  • 批准号:
    63470041
  • 财政年份:
    1988
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Small-Scale Structure of Turbulence
小尺度湍流结构
  • 批准号:
    61540279
  • 财政年份:
    1986
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Erfassung der makroskopischen Strömungseigenschaften und zellulären Migration der Blutströmung im Couette-System mittels Xenon-NMR-Flussbildgebung und -Spektroskopie
使用氙核磁共振流动成像和光谱检测 Couette 系统中血流的宏观流动特性和细胞迁移
  • 批准号:
    32316112
  • 财政年份:
    2007
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Research Grants
Comprehensive Research Toward the Global Theory for the System of Nonlinear Partial Differential Equations
非线性偏微分方程组整体理论的综合研究
  • 批准号:
    10304012
  • 财政年份:
    1998
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Blood damage and turbulence: in vitro study of the turbulence-induced hemolysis in a Taylor-Couette-System
血液损伤和湍流:Taylor-Couette 系统中湍流引起的溶血的体外研究
  • 批准号:
    507267166
  • 财政年份:
  • 资助金额:
    $ 10.29万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了