Small-Scale Structure of Turbulence

小尺度湍流结构

基本信息

  • 批准号:
    61540279
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1986
  • 资助国家:
    日本
  • 起止时间:
    1986 至 1987
  • 项目状态:
    已结题

项目摘要

The small-scale structure of turbulence was investigated by solving the Navier-Stokes equation numerically. The high-symmetry was imposed on the velocity field to save the computation time and the memory capacity. The following five subjects were mainly investigated.(1) Small-scale structure of turbulence We realized the fully developed turbulence with the micro-scale Reynolds number <similar or equal> 200. The Kolmogorov similarity was confirmed to hold in the energy spectrum. The Kolmogorov power law of the energy spectrum in the inertial range was observed with Kolmogorov constant 1.8. The probability density distribution of the velocity derivative and the energy dissipation rate, which characterize the intermittent structure of turbulence, were found to have nuiversal forms independent of the large-scale motive c(2) Energy decay law The power law of energy, which had been observed by experiments and preficted by statistical theories of turbulence, was confirmed quantitatively for the first time as numerical simulation.(3) Chaos in a Navier-Stokes flow We found that the velocity field which is excited by a steady external force undergoes the following series of transitions as the Reynolds number is increased: Steady -> simply periodic -> doubly periodic ->triply periodic -> chaotic motions.(4) MHD trubulence We found that the dynamo effect, by which the kinetic energy is converted into the magnetic energy, occurs when the Reynolds number exceeds a critical value. The kinetic and magnetic energy spectra obey power laws in the statistically equilibrium state.(5) Reconnection of vortex tubes In order to investigate the dynamics of thehelicity, which is one of the important quantities in the theory of turbulence we made a numerical simulation of a knotted vortex tube. The helicity was found to be conserved in the inviscid limit. A new phenomenon called BRIDGING was observed in the process of vortex reconnection.
通过数值求解纳维-斯托克斯方程来研究湍流的小尺度结构。对速度场施加高度对称性以节省计算时间和存储容量。主要研究了以下五个课题。 (1)湍流的小尺度结构实现了微尺度雷诺数<相似或等于>200的充分发展的湍流。在能谱上证实了柯尔莫哥洛夫相似性成立。惯性范围内能谱的柯尔莫哥洛夫幂律被观测到,柯尔莫哥洛夫常数为1.8。表征湍流间歇结构的速度导数和能量耗散率的概率密度分布,被发现具有与大尺度动机无关的通用形式 c(2) 能量衰减定律 能量的幂律,它有通过实验观察到并通过湍流统计理论预测,首次通过数值模拟定量地证实了这一点。(3)纳维-斯托克斯流中的混沌我们发现,由稳定的外部激励激发的速度场随着雷诺数的增加,力会经历以下一系列转变:稳态->简单周期->双周期->三周期->混沌运动。 (4)MHD湍流我们发现发电机效应,动能为当雷诺数超过临界值时,就会转化为磁能。在统计平衡状态下,动能谱和磁能谱均服从幂律。 (5)涡管重联 为了研究湍流理论中重要物理量之一螺旋度的动力学,我们对涡流管进行了数值模拟。打结涡流管。发现螺旋度在无粘极限内保持不变。在涡旋重联过程中观察到一种称为桥接的新现象。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
木田重雄: 数理解析研究所講究録. 606. 1-1 (1987)
Shigeo Kida:数学分析研究所的 Kokyuroku 606. 1-1 (1987)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shigeo Kida: "Complex Singularity of a Two-Dimensional Flow" J. Phys. Soc. Japan.
Shigeo Kida:“二维流的复杂奇异性”J. Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
木田重雄: Lecture Notes in Numenrical & Applied Analysis.
Shigeo Kida:数值与应用分析讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
木田重雄: J.Phys.Soc.Japan.
Shigeo Kida:J.Phys.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
木田重雄: Fluid Dyn.Res.
Shigeo Kida:流体动力学研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIDA Shigeo其他文献

KIDA Shigeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIDA Shigeo', 18)}}的其他基金

Fundamental Properties of Flows in a Precessing Sphere
进动球内流动的基本性质
  • 批准号:
    24540416
  • 财政年份:
    2012
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accurate Analysis of Turbulence Dynamics using Unstable Periodic Flow
使用不稳定周期流精确分析湍流动力学
  • 批准号:
    17340118
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistics of stretching of fluid lines and surfaces, and turbulent mixing
流体线和表面的拉伸以及湍流混合的统计
  • 批准号:
    14540385
  • 财政年份:
    2002
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure and Dynamics of Turbulent Elementary Vortices
湍流基本涡的结构和动力学
  • 批准号:
    12125204
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Turbulent Elementary Votrices and New Development in Theory, Predicition, and control of Turbulence
湍流初等涡流及湍流理论、预测和控制的新进展
  • 批准号:
    12125101
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Theree-dimensional dynamical structure of turbulence vortices Visualization and dynamics
湍流涡旋三维动力学结构可视化与动力学
  • 批准号:
    11837022
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Mechanism of MHD dynamo-Toward Understanding of Geodynamo-
MHD发电机机理研究-了解地球发电机-
  • 批准号:
    07640532
  • 财政年份:
    1995
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical Law and Energy Transfer Mechanism in Turbulence
湍流中的统计规律与能量传递机制
  • 批准号:
    03452053
  • 财政年份:
    1991
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Regulation of Metal Complexes by Ligands
配体对金属配合物的调节
  • 批准号:
    63470041
  • 财政年份:
    1988
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似国自然基金

热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
  • 批准号:
    42376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
各向异性柔性覆层湍流边界层直接数值模拟研究
  • 批准号:
    12362022
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
二氧化碳在深部咸水层流动运移过程高效数值模拟研究
  • 批准号:
    52304030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
  • 批准号:
    12375228
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
城市景观三维扩展对城市热环境影响的数值模拟研究—以武汉为例
  • 批准号:
    42371115
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

High-Accuracy Numerical Simulation of Pathological Vocal Fold Vibrations Considering Individual Differences
考虑个体差异的病理性声带振动的高精度数值模拟
  • 批准号:
    23K17195
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acceleration of High-Fidelity Numerical Simulation for Unsteady Flows with Low Reduced Frequency
低降频非定常流高保真数值模拟加速
  • 批准号:
    23KJ0528
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-fidelity transonic buffet simulations on heterogenous exa-scale supercomputers
异构亿亿级超级计算机上的高保真跨音速抖振模拟
  • 批准号:
    22KF0421
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Versatile Strength Evaluation of CFRP Based on an Automated Data-Driven Numerical Simulation Platform
基于自动化数据驱动数值模拟平台的 CFRP 多功能强度评估
  • 批准号:
    23K16891
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A study on numerical simulation of turbulent combustion inside the combustor of an aircraft engine
航空发动机燃烧室内湍流燃烧数值模拟研究
  • 批准号:
    23KJ0035
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了