RESEARCH ON NORM INEQUALITIES IN BANACH SPACES AND ITS APPLICATIONS
Banach空间中的范数不等式及其应用研究
基本信息
- 批准号:13640188
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research we investigated some geometrical properties of Banach spaces X in connection with classical norm inequalities and their generalizations. We also considered some generalizations of James and Schaffer constants, and showed that some geometrical properties of X can be described in terms of these constants. The uniform convexity and non-squareness of ψ-direct sums of Banach spaces were also investigated.The main results are stated as follows :1. Norm inequalities and geometry of Banach spaces :We consider some generalizations of the classical norm inequalities for Banach spaces X , and characterize some geometrical properties of X in terms of these inequalities. In particular, we prove the exact relations between weighted Clarkson type inequalities and the concepts of p-uniform smoothness and q-uniform convexity, and give the optimal 2-uniform convexity inequalities for concrete Banach spaces. Some extensions of Hanner type and Hlawka type inequalities are also given.2. James, Schaffer type constants and geometry of Banach spaces :We introduce the James type constant J_<X, t>(τ) and the Schaffer type constant S_<X, t>(τ) for Banach spaces X, and investigate fundamental properties of these constants. We show that some properties of X such as uniform convexity, smoothness and non-squareness can be described in terms of the constants J_<X, t>(τ) and S_<X, t>(τ). Some examples of concrete Banach spaces with the calculation of these constants are also given.3. Absolute norms and ψ-direct sums of Banach spaces :We consider the ψ-direct sum X【symmetry】 _ψ Y of Banach spaces X and Y, and show that X【symmetry】_ψY is uniformly convex (locally uniformly convex) if and only if X, Y are uniformly convex (locally uniformly convex) and ψ is strictly convex. Similar characterizations of strict convexity and uniform non-squareness for X 【symmetry】TJ_ψ Y are also given.
在这项研究中,我们研究了Banach空间X的一些几何特性,该特性与经典规范不平等及其概括有关。我们还考虑了James和Schaffer常数的一些概括,并表明可以用这些常数描述X的一些几何特性。还研究了BANACH空间的ψ导向总和的均匀凸度和非方向。主要结果表示如下:1。 Banach空间的规范不平等和几何形状:我们考虑了Banach空间X的经典规范不等式的某些概括,并以这些不平等的方式表征了X的一些几何特性。特别是,我们证明了加权的克拉克森型不平等与P-均匀平滑度和Q-均匀凸的概念之间的确切关系,并给出了混凝土Banach空间的最佳2-均匀凸度不平等。还给出了Hanner类型和Hlawka类型不等式的一些扩展。2。 James,Schaffer类型常数和Banach空间的几何形状:我们介绍了Banach Spaces X的James类型常数J_ <X,T>(τ)和Schaffer型常数S_ <X,T>(τ),并研究这些常数的基本属性。我们表明,X的某些属性,例如均匀的凸度,平滑度和非方格,可以用常数J__ <x,t>(τ)和S_ <x,t>(τ)来描述。还给出了一些用这些常数计算的混凝土巴拉克空间的例子。3。 Absolute norms and ψ-direct sums of Banach spaces :We consider the ψ-direct sum X【symmetry】 _ψ Y of Banach spaces X and Y, and show that X【symmetry】_ψY is uniformly convex (locally uniformly convex) if and only if X, Y are uniformly convex (locally uniformly convex) and ψ is strictly convex.还给出了X [对称性]TJ_ψY的严格凸度和均匀非方面的类似字符。
项目成果
期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yasuji Takahashi: "Strict convexity of absolute norms on C^2 and direct sums of Banach spaces"J. Inequal. Appl.. (to appear).
Yasuji Takahashi:“C^2 上绝对范数的严格凸性和 Banach 空间的直和”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
高橋泰嗣: "On tensor matrices and norm inequalities"数理解析研究所講究緑. (発表予定).
Yasushi Takahashi:“论张量矩阵和范数不等式”数学科学研究所 Kokyuryoku(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sin-Ei Takahashi: "A note on a class of Banach algebra-valued polynomials"International Journal of Mathematics and Mathematical Sciences. 32. 189-192 (2002)
Sin-Ei Takahashi:“关于一类 Banach 代数值多项式的注释”国际数学与数学科学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
高橋泰嗣: "Functions related to convexity and smoothness of Banach spaces"北海道大学数学講究録. 70. 52-55 (2002)
高桥靖:“与巴拿赫空间的凸性和平滑性有关的函数”北海道大学数学高等学 70. 52-55 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
高橋眞映: "On the Hyers-Ulam stability constant of a first order linear differential operator"北海道大学数学講究録. 73. 51-54 (2003)
高桥麻耶:《论一阶线性微分算子的Hyers-Ulam稳定性常数》北海道大学数学讲义录73. 51-54 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAHASHI Yasuji其他文献
TAKAHASHI Yasuji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAHASHI Yasuji', 18)}}的其他基金
Research on geometric constants and norm inequalities in Banach spaces and their applications
Banach空间中几何常数和范数不等式的研究及其应用
- 批准号:
19540196 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON STRUCTURE THEORY OF BANACH SPACES AND NORM INEQUALITIES WITH APPLICATIONS
Banach空间结构理论及范数不等式研究及其应用
- 批准号:
15540179 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON STRUCTURAL THEORY OF BANACH SPACES AND ITS APPLICATIONS
Banach空间结构理论及其应用研究
- 批准号:
11640177 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Geometry and Probability in Banach Spaces and its Applications
Banach空间中的几何与概率研究及其应用
- 批准号:
09640214 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
RESEARCH ON GEOMETRY OF BANACH AND FUNCTION SPACES AND INEQUALITIES
Banach几何与函数空间及不等式的研究
- 批准号:
16540163 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON STRUCTURE THEORY OF BANACH SPACES AND NORM INEQUALITIES WITH APPLICATIONS
Banach空间结构理论及范数不等式研究及其应用
- 批准号:
15540179 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)