RESEARCH ON GEOMETRY OF BANACH AND FUNCTION SPACES AND INEQUALITIES

Banach几何与函数空间及不等式的研究

基本信息

  • 批准号:
    16540163
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

Geometric structures of Banach and function spaces were investigated especially in relation with some norm inequalities. Also ψ-direct sums of Banach spaces were investigated, which seem important as we can easily construct many examples of Banach spaces with a non l_p-type norm from a convex function ψ. Major results are as follows.[1]On geometric structures of Banach and function spaces and norm inequalities :(1)We extended the strong random Clarkson inequality, and characterized the Banach spaces in which the resulting inequality is valid are those of p-uniform smooth, or equivalently those of strong type p with the same constants involved them.(2)We introduced Hanner-type inequalities with a weight and characterized 2-uniformly smooth, and 2-uniformly convex spaces with these inequalities. By changing the place of the weight, the resulting inequalities characterize p-uniformly smooth, and q-uniformly convex spaces. The best value of the weight in these inequalities were determined for L_p-spaces. A duality theorem for these Hanner-type inequalities was presented as well.[2]We presented a sharp triangle inequality and its reverse in a Banach space.[3]On ψ-direct sums of Banach spaces :(1)We characterized the following properties of ψ-direct sums of Banach spaces :smoothness, weak nearly uniform smoothness, WORTH property, Schur property etc. As an application we presented several examples of Banach spaces which are not uniformly non-square, but have the fixed point property.(2)We characterized uniform non l^n_1-ness (B_n-convexity) particularly for the l_1-sum and l_∞-sum of Banach spaces.[4]Some resuts were obatined on the James constant, on the relation between Property M and the fixed point property, and on the Banach-Mazur distance in relation with super-reflexivity etc.
研究了 Banach 和函数空间的几何结构,特别是与一些范数不等式的关系。还研究了 Banach 空间的 ψ 直和,这似乎很重要,因为我们可以轻松地从 a 构造具有非 l_p 型范数的 Banach 空间的例子。主要结果如下:[1]关于Banach和函数空间的几何结构和范数不等式:(1)我们扩展了强随机Clarkson不等式,并刻画了Banach空间,其中得到的不等式有效的是 p-均匀光滑的不等式,或者等效地,具有相同常数的强类型 p 的不等式是有效的。(2)我们引入了带有权重的 Hanner 型不等式,并表征了 2-均匀光滑空间和 2-均匀凸空间通过改变权重的位置,得到的不等式表征了p-均匀光滑和q-均匀凸空间。这些不等式中权重的最佳值。还提出了这些 Hanner 型不等式的对偶定理。[2]我们提出了巴纳赫空间中的尖三角不等式及其逆。[3]关于巴纳赫空间的 ψ 直和: (1)我们表征了Banach空间ψ-直和的以下性质:光滑性、弱近均匀光滑性、WORTH性质、Schur性质等。作为应用,我们提出了Banach空间的几个例子它们不是一致非正方形,但具有不动点属性。(2)我们特别针对 Banach 空间的 l_1-sum 和 l_∞-sum 表征了一致非 l^n_1-ness(B_n-凸性)。[4]对James常数、性质M与不动点性质的关系、Banach-Mazur距离与超自反性的关系等得到了一些结果。

项目成果

期刊论文数量(116)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Banach and Function Spaces (Proceedings of the International Symposium on Banach and Function Spaces 2003, Kitakyushu, Japan, Oct. 2-4, 2003)
Banach 和函数空间(2003 年 Banach 和函数空间国际研讨会论文集,日本北九州,2003 年 10 月 2-4 日)
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mikio Kato;Lech Maligranda (editors)
  • 通讯作者:
    Lech Maligranda (editors)
Uniform non l^n_1-ness of -direct sums of Banach spaces X Y
Banach 空间 X Y 的直和的一致非 l^n_1-ness
Fixed point property of psi-direct sums of Banach spaces
Banach 空间的 psi 直和的定点性质
Strong random Clarkson inequality and its extension
强随机克拉克森不等式及其推广
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    高橋泰嗣;高橋泰嗣;Tomonari Suzuki;Yasuji Takahashi;Yasuji Takahashi;Tomonari Suzuki;Yasutaka Yamada;加藤幹雄;Jyunji Inoue;Lasha Ephremidze;Hiroyuki Takagi;Hiroyuki Takagi;山田康隆;高木康啓行;Sin-Ei Takahasi;山田康隆;田村高幸;田村高幸;高橋泰嗣;Takeshi Miura;Yasutaka Yamada;Makoto Tsukada;Yasutaka Yamada;Hiroyuki Takagi;Yasutaka Yamada;Takayuki Tamura;Takayuki Tamura;Yasuji Takahashi;Takeshi Miura;Makoto Tsukada;山田康隆;Takeshi Miura;山田康隆;山田康隆;高橋泰嗣;Yasutaka Yamada;山田康隆
  • 通讯作者:
    山田康隆
Characterization of fixed points of nonexpansive mappings
非扩张映射不动点的表征
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Mikio其他文献

KATO Mikio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Mikio', 18)}}的其他基金

Research on geometric structures of Banach and function spaces with direct sums
Banach几何结构与直和函数空间的研究
  • 批准号:
    26400131
  • 财政年份:
    2014
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with application of their [psi]-direct sums
Banach 和函数空间的几何结构及其 psi 直和的应用研究
  • 批准号:
    23540216
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on geometric structures of Banach and function spaces with applications
Banach几何结构与函数空间研究及应用
  • 批准号:
    20540179
  • 财政年份:
    2008
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND ψ-DIRECT SUMS
Banach几何结构与函数空间及ψ-直和的研究
  • 批准号:
    18540185
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON GEOMETRIC STRUCTURES OF BANACH AND FUNCTION SPACES AND APPLICATIONS
Banach几何结构与函数空间的研究及应用
  • 批准号:
    14540181
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    11640172
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Stresses on the fracture of mandibular bone in the chidhood used the finite element method
儿童下颌骨骨折的有限元应力分析
  • 批准号:
    09672131
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OPERATOR THEORETICAL RESEARCH ON GEOMETRY OF BANACH SPACES AND APPLICATIONS
Banach空间几何算子理论研究及应用
  • 批准号:
    09640203
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Anti-tumor effect of novel tumor necrosis factor (TNF-S) to human urological cancer in vitro and in vivo
新型肿瘤坏死因子(TNF-S)对人泌尿癌的体外和体内抗肿瘤作用
  • 批准号:
    63570755
  • 财政年份:
    1988
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

RESEARCH ON STRUCTURE THEORY OF BANACH SPACES AND NORM INEQUALITIES WITH APPLICATIONS
Banach空间结构理论及范数不等式研究及其应用
  • 批准号:
    15540179
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Geometry and Probability in Banach Spaces and its Applications
Banach空间中的几何与概率研究及其应用
  • 批准号:
    09640214
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
バナッハ空間の幾何学とそれに関連した不等式の作用素論的研究
Banach 空间几何及相关不等式的算子理论研究
  • 批准号:
    07640225
  • 财政年份:
    1995
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了