Construction of Numerical Analysis for High-performance Large-Scale Computation

高性能大规模计算数值分析的构建

基本信息

  • 批准号:
    13304007
  • 负责人:
  • 金额:
    $ 26.12万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

1.In devising numerical schemes for flow problems, how to approximate the convection torn is a crucial point. Characteristic finite element approximation is based on the approximation of the material derivative, which is the sum of the time derivative term and the convection term. So far finite element schemes of characteristic method of the first-order accuracy in time increment have been used. We have developed a finite element scheme of the second-order accuracy in time increment and obtained the best possible error estimate. This scheme is more robust than the first-order scheme with respect to numerical integration error and can solve flow problems more stably and accurately.2.We have developed a finite element scheme and established an error estimate for heat convection problems with temperature-dependent viscosity. The viscosity of heat conduction problems such as mantle convection in the Earth and melting glass convection in the furnace is strongly dependent on the temperature. … More The dependence plays an important role in die formation of convection patterns. Our scheme is applicable for the general Rayleigh-Benard problems with temperature-dependent viscosity, thermal conductivity, and thermal expansion coefficient. Using this scheme we have carried out large-scale numerical simulation of Earth's mantle convection in three-dimensional spherical shell and succeeded in obtaining complex heat convection patterns.3.In the infinite precision computation we have succeeded a large-scale parallel computation using a cluster of high-performance computers with 10CPU and 20GB memory. For one-dimensional boundary-value problems very precise results with precision 4995 digits have been obtained. We have used this system to perform direct numerical simulation of inverse problems and made possible a numerical analysis of inverse problems.4.Formulating eddy current problems in magnetic vector potential and electric scalar potential, we have solved them using a hierarchical domain decomposition method. This solution has been shown to be effective under the environment of parallel computation. By this method we have carried out large-scale numerical simulation of nonlinear static magnetic problems in magnetic vector potential. Less
1.在设计流动问题的数值方案时,如何近似对流撕裂是一个关键点,特征有限元近似是基于材料导数的近似,即时间导数项和对流项之和。采用了时间增量一阶精度特征法的有限元格式,建立了时间增量二阶精度有限元格式,并获得了最佳误差。该方案在数值积分误差方面比一阶方案更加鲁棒,能够更稳定、更准确地解决流动问题。2.我们开发了有限元方案并建立了温度-热对流问题的误差估计。热传导问题(例如地球中的地幔对流和熔炉中的熔化玻璃对流)的粘度很大程度上取决于温度……更多这种依赖性在对流模式的形成中起着重要作用。适用于与温度相关的粘度、导热系数和热膨胀系数的一般瑞利-贝纳德问题,我们利用该方案对三维球壳中的地幔对流进行了大规模数值模拟,并成功获得了复杂的热量。 3.在无限精度计算中,我们使用具有10CPU和20GB内存的高性能计算机集群成功地进行了大规模并行计算,对于一维边值问题非常精确。利用该系统对反问题进行了直接数值模拟,得到了精度为4995位的结果,使反问题的数值分析成为可能。4.对磁矢量势和电标量势的涡流问题进行了求解。使用分层域分解方法,该解决方案已被证明在并行计算环境下是有效的,我们已经对磁矢量势中的非线性静磁问题进行了大规模数值模拟。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Murakawa, H., Nakaki, T.: "A singular limit approach to moving boundary problems and its applications"Theoretical and Applied Mechanics Japan. 52. 255-260 (2003)
Murakawa, H.,Nakaki, T.:“移动边界问题的奇异极限方法及其应用”日本理论与应用力学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tabata, M.: "Finite element approximation to infinite Prandtl number Boussinesq equations with temperature dependent coefficients"Future Generation Computer Systems. (to appear).
Tabata, M.:“具有温度相关系数的无限普朗特数 Boussinesq 方程的有限元近似”未来一代计算机系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nakao, M.T.et al.: "Verified numerical computations for an inverse elliptic eigenvalue problem with finite data"Japan Journal of Industrial and Applied Mathematics. 18. 587-602 (2001)
Nakao, M.T.等人:“用有限数据验证逆椭圆特征值问题的数值计算”日本工业与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ushijima, T.: "An FEM-CSM combined method for planar exterior Laplace problems"Japan Journal of Industrial and Applied Mathematics. 18. 359-382 (2001)
Ushijima, T.:“平面外部拉普拉斯问题的 FEM-CSM 组合方法”日本工业与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tabata, M.: "Uniform solvability of finite element solutions in approximate domains"Japan Journal of Industrial and Applied Mathematics. 18. 567-585 (2001)
Tabata, M.:“近似域中有限元解的统一可解性”日本工业与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TABATA Masahisa其他文献

TABATA Masahisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TABATA Masahisa', 18)}}的其他基金

Development and analysis of new numerical methods for two-fluid problems
二流体问题新数值方法的开发和分析
  • 批准号:
    22540143
  • 财政年份:
    2010
  • 资助金额:
    $ 26.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and analysis of high-quality numerical methods and simulation for flow problems
高质量数值方法的开发和分析以及流动问题的模拟
  • 批准号:
    16104001
  • 财政年份:
    2004
  • 资助金额:
    $ 26.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Construction of a Practical Computation Code for Heat Convection Problems with Slow Flow
慢流热对流问题实用计算代码的构建
  • 批准号:
    11554003
  • 财政年份:
    1999
  • 资助金额:
    $ 26.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Numerical Methods for Flow Problems and their Numerical Simulation
流动问题的新数值方法及其数值模拟
  • 批准号:
    10304007
  • 财政年份:
    1998
  • 资助金额:
    $ 26.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Co-operative Research on Numerical Solutions in Seience and Technology
科技数值解的合作研究
  • 批准号:
    07304022
  • 财政年份:
    1995
  • 资助金额:
    $ 26.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

界面问题的高阶有限体积元方法及理论分析研究
  • 批准号:
    11801226
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
偏微分方程最优控制问题的混合有限体积元方法研究
  • 批准号:
    11701299
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
三类非线性偏微分方程的高精度差分方法及其理论研究
  • 批准号:
    11701229
  • 批准年份:
    2017
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
复杂多孔介质中多相和多组份流的数学建模,数值模拟与分析
  • 批准号:
    11601346
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于Darcy-Stokes耦合模型的水污染问题数值模拟方法
  • 批准号:
    11501335
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigation of Biomarkers for Sugars Intake - A Controlled Feeding Study
糖摄入量生物标志物的研究 - 一项控制喂养研究
  • 批准号:
    9100691
  • 财政年份:
    2015
  • 资助金额:
    $ 26.12万
  • 项目类别:
Investigation of Biomarkers for Sugars Intake - A Controlled Feeding Study
糖摄入量生物标志物的研究 - 一项控制喂养研究
  • 批准号:
    8945307
  • 财政年份:
    2015
  • 资助金额:
    $ 26.12万
  • 项目类别:
Investigation of Biomarkers for Sugars Intake - A Controlled Feeding Study
糖摄入量生物标志物的研究 - 一项控制喂养研究
  • 批准号:
    9503354
  • 财政年份:
    2015
  • 资助金额:
    $ 26.12万
  • 项目类别:
An analysis of auditing accounting estimate: management bias, error corrections and changes in accounting estimates
审计会计估计分析:管理层偏差、错误更正与会计估计变更
  • 批准号:
    23530595
  • 财政年份:
    2011
  • 资助金额:
    $ 26.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of methodology for a posterior error estimation of finite element solutions
有限元解后验误差估计方法的研究
  • 批准号:
    16540096
  • 财政年份:
    2004
  • 资助金额:
    $ 26.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了