Properties of Solutions of Partial Differential Equations and Their Applications
偏微分方程解的性质及其应用
基本信息
- 批准号:63540134
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1988
- 资助国家:日本
- 起止时间:1988 至 1989
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fundamental solution of the Cauchy problem for a hyperbolic operator is given in the form of Fourier integral operator. As shown below, when the problem is not C" well-posed, the symbol of the fundamental solution has exponential growth, that is, it is estimated not only from above but also from below by (1) C exp[cxi^<1/k>], c > 0, The constant kappa in (1) corresponds to the constant in the necessary and sufficient condition for the well-posedness in Gevrey classes. In order to study this phenomena we define UWF^<{mu}>(u)(ultra wave front sets) for u that belongs to the space of ultradistributions S{k}' by (chi_0,xi_0) <not a member of> UWF^<{mu}>(u) <tautomer> *_<epsilon> > O*C ; |X^u(xi)| <less than or equal> exp[epsilon < xi >^<1/mu>], where X * S{k}*C^*_ and xi belongs to a conic neighborhood of xi_0. Then by using UWP^<{mu}>(u) we can state the propagation of very high singularities for the solution of not C^* well-posed Cauchy problem. We also construct the fundamental solutions of the Cauchy problem for degenerate hyperbolic operators (2) L_1 = THETA^2_ - t^2_ - at^kTHETA^x with 0 < k < j - 1 and (3) L_2 = THETA^2_ - x^<2j>THETA^2_ - aTHETA^x with an even integer j and we investigated other related topics.
双曲算子柯西问题的基本解以傅立叶积分算子的形式给出。如下图,当问题不是C"适定时,基本解的符号呈指数增长,即不仅从上估计,而且从下估计: (1) C exp[cxi^<1 /k>], c > 0, (1) 中的常数 kappa 对应于 Gevrey 类适定性的充分必要条件中的常数。为了研究这种现象,我们定义 UWF^<{mu}>。 (u)(超波前集)对于属于超分布 S{k}' 空间的 u (chi_0,xi_0) <不是成员> UWF^<{mu}>(u) <互变异构体> *_<epsilon> > O*C ; |X^u(xi)| <小于或等于> exp[epsilon < xi >^<1/mu>],其中 X * S{k}*C^*_ 和 xi 属于圆锥邻域xi_0. 然后通过使用 UWP^<{mu}>(u) 我们可以描述非 C^* 适定柯西问题的解的非常高奇点的传播 我们还构造了退化柯西问题的基本解。双曲运算符 (2) L_1 = THETA^2_ - t^2_ - at^kTHETA^x 且 0 < k < j - 1 且 (3) L_2 = THETA^2_ - x^<2j>THETA^2_ - aTHETA^x 具有偶数整数 j,我们研究了其他相关主题。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
谷口和夫: "A fundamental solution for a degenerate hyperbolic operator of second order and Fourier integral operators of complex phase." 発表予定.
Kazuo Taniguchi:“二阶简并双曲算子和复相位傅立叶积分算子的基本解决方案。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
三谷佐孝: "On the compactness of extensions." Q and A in General Topology. 6. 103-106 (1988)
Sataka Mitani:“关于扩展的紧致性。” 6. 103-106 (1988)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo. TANIGUCHI: "A fundamental solution for a degenerate hyperbolic operator of second order and Fourier integral operators of complex phase"
一雄。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
石井伸郎: "Ring class fields modulo 8 of Q(√)and the quartic character of units of Q(√)for m≡1 mod 8." Osaka J.Math.26. 625-646 (1989)
Nobuo Ishii:“域 Q(√<-m>) 的环类模 8 和 Q(√<m>) 单位的四次特征,其中 m≠1 mod 8。”Osaka J.Math.26。 (1989)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKANO Hatsuo其他文献
OKANO Hatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKANO Hatsuo', 18)}}的其他基金
Fundamental and applicable study of integral operators
积分算子的基础与应用研究
- 批准号:
60540116 - 财政年份:1985
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Analysis of properties of the solutions to Scrodinger equations via canonical transforms
通过正则变换分析 Scrodinger 方程解的性质
- 批准号:
18540176 - 财政年份:2006
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of Correspondence between Classical and Quantum Dynamical Systems
经典动力系统与量子动力系统对应关系的研究
- 批准号:
14540210 - 财政年份:2002
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relation between the quantitative properties of the solutions of partial differential equations and the geometrical structures of their characteristics
偏微分方程解的定量性质与其特征的几何结构之间的关系
- 批准号:
12640175 - 财政年份:2000
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectra of Elliptic Operators on Manifolds and Classical Mechanics
流形和经典力学上的椭圆算子谱
- 批准号:
11640205 - 财政年份:1999
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on differential equations by microlocal analysis
微分方程的微局部分析研究
- 批准号:
08454023 - 财政年份:1996
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)