Fundamental and applicable study of integral operators
积分算子的基础与应用研究
基本信息
- 批准号:60540116
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1985
- 资助国家:日本
- 起止时间:1985 至 1986
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We investigated properties of Fourier integral operators and studied the singularities of solutions of weakly hyperbolic operators. We clarified the Gevrey wave front sets of solutions of differential equations with coefficients in Gevrey classes. The results are as follows:1. The appearance of wave front sets of fundamental solutions of weakly hyperbolic operators depends on their lower order terms and their fundamental solutions may have the Gevrey wave front sets. In our project we construct exactly the fundamental solutions and investigate their wave front sets and Gevrey wave front sets. Then we can show that the solutions of the Cauchy problem have the branching singularities in a Gevrey class. In order to construct the fundamental solutions we use the Stokes coefficients of associated ordinary differential equations. Then, we can determine exactly whether or not the solution of the Cauchy problem of a degenerate hyperbolic equation has branching singularities.2. In the study of singularities of solutions of differential equations with coefficients in Gevrey classes we give a precise estimate of multi-products of Fourier integral operators and pseudo-differential operators. We construct, as an application, the fundamental solution for a weakly hyperbolic operator and the parametrix of a hypoelliptic operator, and investigate the Gevrey wave front sets of solutions. Throughout this project we use mainly oscillatory integrals.
我们研究了傅里叶积分算子的性质并研究了弱双曲算子解的奇异性。我们阐明了具有 Gevrey 类系数的微分方程解的 Gevrey 波前组。研究结果如下: 1.弱双曲算子的基本解的波前集的出现取决于它们的低阶项,并且它们的基本解可能具有Gevrey波前集。在我们的项目中,我们准确构建了基本解决方案并研究了它们的波前集和 Gevrey 波前集。然后我们可以证明柯西问题的解在 Gevrey 类中具有分支奇点。为了构造基本解,我们使用相关常微分方程的斯托克斯系数。这样就可以准确判断简并双曲方程柯西问题的解是否存在分支奇点。 2.在研究带有 Gevrey 类系数的微分方程解的奇异性时,我们给出了傅里叶积分算子和伪微分算子的多重乘积的精确估计。作为一个应用,我们构造了弱双曲算子的基本解和亚椭圆算子的参数矩阵,并研究了 Gevrey 波前解集。在整个项目中,我们主要使用振荡积分。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Morimoto K.Taniguchi: Osaka J.Math.23. 765-814 (1986)
Y.Morimoto K.Taniguchi:大阪 J.Math.23。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kenzo Shinkai: "Gevrey wave front sets of solutions for a weakly hyperbolic operator" Math. Japonica. 30. 701-717 (1985)
Kenzo Shinkai:“弱双曲算子的 Gevrey 波前解集” Math.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Taniguchi: Proc.Japan Acad.61. 291-293 (1985)
K.Taniguchi:Proc.Japan Acad.61。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKANO Hatsuo其他文献
OKANO Hatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKANO Hatsuo', 18)}}的其他基金
Properties of Solutions of Partial Differential Equations and Their Applications
偏微分方程解的性质及其应用
- 批准号:
63540134 - 财政年份:1988
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Analysis of properties of the solutions to Scrodinger equations via canonical transforms
通过正则变换分析 Scrodinger 方程解的性质
- 批准号:
18540176 - 财政年份:2006
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of Correspondence between Classical and Quantum Dynamical Systems
经典动力系统与量子动力系统对应关系的研究
- 批准号:
14540210 - 财政年份:2002
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The relation between the quantitative properties of the solutions of partial differential equations and the geometrical structures of their characteristics
偏微分方程解的定量性质与其特征的几何结构之间的关系
- 批准号:
12640175 - 财政年份:2000
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectra of Elliptic Operators on Manifolds and Classical Mechanics
流形和经典力学上的椭圆算子谱
- 批准号:
11640205 - 财政年份:1999
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on differential equations by microlocal analysis
微分方程的微局部分析研究
- 批准号:
08454023 - 财政年份:1996
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)