Qualitative theory of solutions for semilinear elliptic partial differential equations

半线性椭圆偏微分方程解的定性理论

基本信息

  • 批准号:
    12640197
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

1.We study semilinear elliptic equations in a ball or annulus of n-dimensional Euclid space. Let G be a closed subgroup of the orthogonal group. A solution is called G invariant if it is invariant under G action. Since G is a closed subgroup of the orthogonal group, it is a transformation group on the unit sphere. It is proved that there exists a G invariant non-radial solution if and only if G is not transitive on the unit sphere.2.We study the nodal solution, which is a radially symmetric solution having zeros, for the second order sublinear elliptic equations. We obtain the necessary and sufficient condition for the existence and uniqueness of a k-nodal solution for each integer k. The result means that the radially symmetric solution of a sublinear elliptic equation is uniquely determined by its number of zeros. This gives an important information in the study of group invariant solutions.3.In sublinear elliptic equations, it is proved that there exist infinitely many solutions without the assumption that the nonlinear term is odd. In this case, the Lagrangean functional associated with the elliptic equation is not even, however it is considered as a perturbation from an even functional. The existence of multiple solutions has been studied for the superlinear elliptic equations. However, little is known about the multiple solutions of the sublinear elliptic equations.
1.我们研究n维欧几里得空间的球或环中的半线性椭圆方程。令G 为正交群的闭子群。如果一个解在 G 作用下保持不变,则该解称为 G 不变量。由于G是正交群的闭子群,因此它是单位球面上的变换群。证明了当且仅当G在单位球面上不具有传递性时,存在G不变的非径向解。2.研究二阶次线性椭圆方程的节点解,它是有零点的径向对称解。我们获得了每个整数 k 的 k 节点解存在且唯一的充要条件。结果意味着次线性椭圆方程的径向对称解由其零个数唯一确定。这为群不变解的研究提供了重要的信息。3.在次线性椭圆方程中,证明了在不假设非线性项为奇数的情况下存在无穷多个解。在这种情况下,与椭圆方程相关的拉格朗日泛函不是偶函数,但它被视为偶函数的扰动。研究了超线性椭圆方程的多重解的存在性。然而,人们对次线性椭圆方程的多重解知之甚少。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
R.Kajikiya: "Non-radial solutions with group invariance for the sublinear Emden-Fowler equation."Nonlinear Analysis, T.M.A.. 47(No.6). 3759-3770 (2001)
R.Kajikiya:“次线性 Emden-Fowler 方程的具有群不变性的非径向解。”非线性分析,T.M.A.. 47(第 6 期)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Kajikiya: "Multiple existence of non-radial solutions with group invariance for sublinear elliptic equations."J.Differential Equations. 186(No.1). 299-343 (2002)
R.Kajikiya:“次线性椭圆方程具有群不变性的非径向解的多重存在。”J.微分方程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Kajikiya: "Multiple existence of non-radial solutions with group invariance for sublinear elliptic equations"Journal of Differential Equations. 186(No.1). 299-343 (2002)
R.Kajikiya:“次线性椭圆方程具有群不变性的非径向解的多重存在”微分方程杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Kajikiya: "Orthogonal group invariant solutions of the Emden-Fowler equation."Nonlinear Analysis, T.M.A.. 44(No.7). 845-896 (2001)
R.Kajikiya:“Emden-Fowler 方程的正交群不变解。”非线性分析,T.M.A. 44(No.7)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Kajikiya: "Orthogonal group invariant solutions of the Emden-Fowler equation."Nonlinear Analysis,T.M.A.. (発表予定).
R. Kajikiya:“Emden-Fowler 方程的正交群不变解。”非线性分析,T.M.A.(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAJIKIYA Ryuji其他文献

KAJIKIYA Ryuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAJIKIYA Ryuji', 18)}}的其他基金

Structure of solution spaces for singular partial differential equations.
奇异偏微分方程解空间的结构。
  • 批准号:
    20540197
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiple existence and structure of solutions for semilinear elliptic equations.
半线性椭圆方程解的多重存在性和结构。
  • 批准号:
    16540179
  • 财政年份:
    2004
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of solution space of nonlinear partial differential equations
非线性偏微分方程解空间的研究
  • 批准号:
    08640223
  • 财政年份:
    1996
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

群作用不变非线性哈密顿系统之对称周期解及其相关问题的研究
  • 批准号:
    12171108
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
非线性方程的非点李对称及其相关问题研究
  • 批准号:
    11475052
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
微分方程的群不变结构解的存在性
  • 批准号:
    11301541
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multisymplectic Geometry and Geometric Numerical Integrator for Variational Problems
变分问题的多辛几何和几何数值积分器
  • 批准号:
    20K14365
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on prehomogeneous vector spaces and micro-local analysis
预齐次向量空间与微观局部分析研究
  • 批准号:
    15340042
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of solution space of nonlinear partial differential equations
非线性偏微分方程解空间的研究
  • 批准号:
    08640223
  • 财政年份:
    1996
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了