GEOMETRY OF LAPLACE OPERATOR OR ITS VARIATION TYPE OPERATOR ON RIEMANNIAN MANIFOLD (2003)
黎曼流形上拉普拉斯算子或其变分型算子的几何结构(2003)
基本信息
- 批准号:12640078
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We tried to investigate the following themes or questions with concernig of the finite type submanifolds or biharmonic submanifolds :(i)Are there the finite type surfaces with given mean curvature H in the family of surfaces of revolution x.(u, v)=(u cos v, u sin v, f(u)) generated by the periodic function z=f(u) ?(ii)Are there the finite type surfaces with given Gauss curvature K in the family of surfaces of revolution x(u, v)=(u cos v, u sin v, f(u)) generated by the function z=f(u) ?(iii)Are there the finite type surfaces with constant mean curvature in the family of surfaces ?(iv)Are there the Willmore surfaces of finite type ?(v-1)The finite type submanifolds in the space with D` Atri metric.(v-2)The biharmonic submanifolds in the space with D` Atri metricWe will continue to study in future the following still open conjectures of Prof. Bang-yen Chen1.To determine all of the finite type surfaces in Eucldean space of dimension 3(Chen conjectur 1 : The only finite type surfaces in Eucldean space of dimension 3 are the minimal suefaces, spheres and right cylinders.)2.To determine all of the biharmonic submanifolds in Eucldean space of dimension n(Chen conjectur 2 : The only in Eucldean space of dimension n (n>3) are the harmonc ones.)3.To determine all of the biharmonic submanifolds in Minkowsky space of dimension 4.
我们试图对以下主题或问题进行关注,以关注有限类型的子手术或双harmonic submanifolds:(i)是否存在革命表面中给定的平均曲率h的有限类型表面。在革命的表面家族中,x(u,v)=(U cos v,u sin v,f(u))由功能z = f(u)产生?(iii)有限型表面在表面家族中具有平均曲率的持续平均值吗?(iv)是否有有限的有限型表面?带有d'Atri Metricwe的空间中的双谐子延伸物将来将来继续研究以下仍然是对Bang-Yen Chen1教授的开放猜想。确定维度3的Eucldean Space 3中的所有有限型表面(Chen Ixportur 1:Chen Ixportur 1:在Eucldean of Space of Remeldean Space 3中唯一的有限型表面是2. cen sephers cen cen cen cen cen cen cen cen cen cen cen cen seepthe and cen。维度为n的欧几达人空间中的Biharmonic submanifolds(Chen Conjodiur 2:在eucldean空间中唯一的n(n> 3)是Harmonc。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RIGIDITY AND SPHERE THEOREMS FOR SUBMANIFOLDS II
- DOI:10.2206/kyushujm.48.291
- 发表时间:1994-09
- 期刊:
- 影响因子:0.4
- 作者:K. Shiohama;Hong-wei Xu
- 通讯作者:K. Shiohama;Hong-wei Xu
Some homological invariants of a mapping class group of a 3-dimensional handlebody
3维手柄映射类群的一些同调不变量
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Wayne Rossman;Masaaki Umehara;Kotaro Yamada;Susumu Hirose
- 通讯作者:Susumu Hirose
General existence of minimal surfaces of genus zero with catenoidal ends and prescribed flux
具有悬链线末端和指定通量的零属极小曲面的一般存在性
- DOI:
- 发表时间:2000
- 期刊:
- 影响因子:0
- 作者:Shin Kato;Masaaki Umehara;Kotaro Yamada
- 通讯作者:Kotaro Yamada
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIKAWA Susumu其他文献
ISHIKAWA Susumu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIKAWA Susumu', 18)}}的其他基金
The Spectral Geometry on the submanifold of (pseudo-) Euclidean space
(伪)欧几里得空间子流形上的谱几何
- 批准号:
09640119 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Splanchnic perfusion following open-heart surgery
心脏直视手术后的内脏灌注
- 批准号:
07671451 - 财政年份:1995
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Research on geometryof eigenvalues of differential operators and submanifolds
微分算子和子流形特征值的几何研究
- 批准号:
18540091 - 财政年份:2006
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Spectral Geometry on the submanifold of (pseudo-) Euclidean space
(伪)欧几里得空间子流形上的谱几何
- 批准号:
09640119 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)