The Spectral Geometry on the submanifold of (pseudo-) Euclidean space
(伪)欧几里得空间子流形上的谱几何
基本信息
- 批准号:09640119
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We obtained 25 and more prints in this Project (See REFERENCES).In 19971. We obtained some new results about the classification of biharmonic submanifold in psudo-Euclidean space. In detail,(1) The classification problem of biharmonic curves in psudo-Euclidean space was completed.(2) It was proved that the bihaemonic surfaces do not exist in 3 dimensional psudo-Euclidean space.(3) Some classification theorems of biharmonic surfaces in 4 dimensional psudo-Euclidean space was obtained.2. About the spacelike maximal submanifolds with some conditions for Ricci curvature immersed in de-Sitter sphere in psudo-Euclidean space, the classification of them was discussed.3. About the hypersurfaces of constant scalar curvature immersed in de-Sitter sphere in psudo-Euclidean space, the sphere theorem was discussed.4. About the comformally flat 3 dimensional Riemannian manifolds under some conditions for Ricci curvature and scalar curvature, the classification problem of them was discussed.In 19981. … More We obtained, under some conditions for scalar curvature, that any compact submanifold immersed in de-Sitter sphere in psudo-Euclidean space is only a standard sphere.2. We obtained a characterization about the Clifford torus.3. (1) We discussed about 3-dimensional comformally flat Riemannian manifold with non negative constant scalar curvature and the constan norm of Ricci curvature.(2) We discussed about 3-dimensional comformally flat Riemnnian manifold with negative constant scalar curvature and the constan norm of Ricci curvature.In 19991. We discussed the classification problem about the minimal closed surfaces in unit sphere with bounded norm of Ricci curvature. This result is concerted with the famous theorem by S.S.Chern, do Carmo and S. Kobayashi that the Clifford torus is only minimal closed surfaces of S=n in unit sphere.2. We obtained some progress concerned with the third work of listed in 19983. We now investigate the following open problems proposed by Bang-yen Chen;(1) The classification problem of the finite type surface in 3 Euclidean space.(2) The classification problem of the biharmonic submanifolds in n-dimensional Euclidean space.(3) The classification problem of the biharmonic submanifolds in 4-dimensional Minkovski space. Less
我们在该项目中获得了25张和更多印刷品(参见参考文献)。在19971年。我们获得了有关psudo-euclidean空间中Biharmonic Submanifold分类的一些新结果。详细说明,(1)完成了psudo-euclidean空间中双谐曲线的分类问题。(2)证明,在3个psudo-euclidean space中,双方的表面不存在。(3)在4个dimensions psudo-ecudo-ecudo-ecudean space中,psudean space的一些分类定理均可予以分类。关于浸入psudo-euclidean空间中浸入DE特性球体的RICCI曲率条件的某些条件的间距最大次符号,讨论了它们的分类。3。关于沉浸在psudo-euclidean空间中的DE特性球体中的恒定标态曲率的高度,讨论了球理定理。4。关于在RICCI曲率和标量曲率的某些条件下,Riemannian流形的三个方面的分类问题,讨论了它们的分类问题。我们获得了有关克利福德圆环的特征。3。 (1)我们讨论了3维的商品平坦的riemannian流形,具有非负恒定标量曲率和RICCI曲率的康斯坦规范。(2)我们讨论了关于3维相保密的riemnnian歧管,负恒定标量曲率和constan constan corm curvation.in 19991 in Cranfifific in confififien.in in Intrim in confifien.in in Intrim.in Incipifience。 RICCI曲率的有界规范。该结果与S.S. Chern,Do Carmo和S. Kobayashi合作,认为Clifford Torus只是单位球体中S = N的最小闭合表面。2。我们在19983年列出的第三项工作方面取得了一些进展。现在,我们调查了Bang-Yen Chen提出的以下开放问题;(1)在3个欧几里得空间中有限类型表面的分类问题。(2)n维欧亚氏型euclidean Space Biharmonic Submanifolds的分类问题(3)分类。 Minkovski空间。较少的
项目成果
期刊论文数量(93)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Qing-Ming Cheng and Katsuhiro Shiohama: "Non-Existence of Stable currents II"Kyushu Journal of Mathmatics. Vol. 51. 149-164 (1997)
程庆明和盐滨克宏:“稳定电流的不存在II”九州数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Katsuhiro Shiohama and Hongwei Xu: "Lower bound for L^<n/2> curvature norm and its application"The Journal of Geometric Analysis. Vol. 7. 377-386 (1997)
Katsuhiro Shiohama 和 Hongwei Xu:“L^<n/2> 曲率范数的下界及其应用”《几何分析杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshiroh Machigashira: "the Gaussian Curvature of Alexanfrov surfaces"Journal of Mathematical Sciety of Japan. Vol. 50. 859-878 (1998)
Yoshiroh Machigashira:“Alexanfrov 曲面的高斯曲率”日本数学学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Wayne Rossman, Masaaki Umehara and Kotaro Yamada: "Irreducible constant mean curvature 1 surface in hyperbolic space with positive genus"Tohoku Mathematical Journal. 49. 449-484 (1997)
Wayne Rossman、Masaaki Umehara 和 Kotaro Yamada:“具有正亏格的双曲空间中的不可约常数平均曲率 1 曲面”东北数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Qing-Ming Cheng: "A Characterization of the Clifford torus"Proc.Amer.Math.Soc.. 127. 819-828 (1999)
程庆明:“克利福德环面的特征”Proc.Amer.Math.Soc.. 127. 819-828 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIKAWA Susumu其他文献
ISHIKAWA Susumu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIKAWA Susumu', 18)}}的其他基金
GEOMETRY OF LAPLACE OPERATOR OR ITS VARIATION TYPE OPERATOR ON RIEMANNIAN MANIFOLD (2003)
黎曼流形上拉普拉斯算子或其变分型算子的几何结构(2003)
- 批准号:
12640078 - 财政年份:2000
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Splanchnic perfusion following open-heart surgery
心脏直视手术后的内脏灌注
- 批准号:
07671451 - 财政年份:1995
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Research on geometryof eigenvalues of differential operators and submanifolds
微分算子和子流形特征值的几何研究
- 批准号:
18540091 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GEOMETRY OF LAPLACE OPERATOR OR ITS VARIATION TYPE OPERATOR ON RIEMANNIAN MANIFOLD (2003)
黎曼流形上拉普拉斯算子或其变分型算子的几何结构(2003)
- 批准号:
12640078 - 财政年份:2000
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)