Integrable field theories in higher dimensions and infinite-dimensional symmetries
高维和无限维对称性的可积场论
基本信息
- 批准号:10640283
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have carried out research on the following two subjects :I.Extension of integrable field theories in various directionsII.New models of field theories in view of unified theoriesWe have obtained a few results on the following problems. We have also found new problems in the course of the present research.I.(a) Test of Guttmann-Enting's conjecture : eight-vertex model(b) Integrable lattice models with boundaries and their field theory limit(c) Integrable models containing chiral fermions and SUSY models on the lattice(d) Ultraviolet divergence properties of the extended SUSY NLSM in three dimensions(e) Non-commutative extension of two-dimensional integrable field theories(f) Extension of the Wess-Zumino-Witten model to higher dimensions(g) Quantum theory of Calogero-Moser model : New results on root systems and Lax representation.(h) Quantum theory of Calogero-Moser model : Integrability of models with degenerate potential.II.(a) Higher dimensional gauge theories as the origin of Higgs fields(b) Duality between field theories in diverse dimensions : Duality between antisymmetric tensor fields and nonlinear sigma models.We have published 19 papers during the three years of this project term.
我们已经对以下两个主题进行了研究:i.在各个方向上的综合场理论的扩展。鉴于统一理论的新模型,我们已经在以下问题上获得了一些结果。我们还在本研究过程中发现了新问题。I。(a)测试Guttmann-Enting的猜想:具有边界的八个Vertex模型(b)具有界限及其野外理论限制(C)包含手性手性武器和SUSY模型的野外理论限制(c)的集成晶格模型(d)紫外线(d)紫外线的susy nls nls nls nls nls nls nls nls nls nls nls nls nls nls nlls nls nlls nl ls nls nls nls nls nls nls nls的模型二维可整合现场理论的扩展(f)将肥大模型的模型扩展到更高维度(g)calogero-moser模型的量子理论:calogero-moser模型的量子系统和LAX表示的新结果。各个方面的理论:反对称张量场和非线性Sigma模型之间的二元性。我们在该项目期限的三年中发表了19篇论文。
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Hatanaka T.Inami, C.S.Lim: "The Gauge Hierarchy Problem and Higher-Dimensional Gauge Theories"Mod.Phys.Letts.. A13. 2601-2611 (1998)
H.Hatanaka T.Inami、C.S.Lim:“规范层次问题和高维规范理论”Mod.Phys.Letts.. A13。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Furuta, T.Inami: "Ultraviolet Properties of Non-Commutative Wess-Zumino-Witten Model"Mod.Phys.Letts.. A15. 997-1002 (2000)
K.Furuta、T.Inami:“非交换 Wess-Zumino-Witten 模型的紫外线特性”Mod.Phys.Letts.. A15。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.J.Bordner: "Calogero-Moser Models III:Elliptic Potential and Twisting" Prog.Theor.Phys.101巻4号.
A.J.Bordner:“Calogero-Moser 模型 III:椭圆势和扭曲”Prog.Theor.Phys.Vol.101,No.4。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Hatanaka: "The Gauge Hierarchy Problem and Higher-Dimensional Guge Theories" Mod.Phys.Letts.A13巻. 2601-2612 (1998)
H.Hatanaka:“规范层次问题和高维规范理论”Mod.Phys.Letts.A13 卷 2601-2612 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Inami, Y.Saito and M.Yamamoto: "Vanishing Next-to-Leading Order Corrections to the β Function of the SUSY CP^<N-1> Model in Three Dimensions"Prog.Theor.Phys.. 103. 1283-1288 (2000)
T.Inami、Y.Saito 和 M.Yamamoto:“三维 SUSY CP^<N-1> 模型的 β 函数的消失次前导阶修正”Prog.Theor.Phys.. 103. 1283 -1288 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INAMI Takeo其他文献
INAMI Takeo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INAMI Takeo', 18)}}的其他基金
Cosmological constant problem, gravity loop and instanton corrections
宇宙常数问题、引力环和瞬子修正
- 批准号:
24540285 - 财政年份:2012
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model for inflation based on higher-dimensional gauge theory
基于高维规范理论的暴胀模型
- 批准号:
21540278 - 财政年份:2009
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Compactification of M theory and the origin of Higgs and matter fields
M 理论的紧化以及希格斯和物质场的起源
- 批准号:
15540287 - 财政年份:2003
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable Field Theories in Higher Dimensions and Supersymmetry
高维和超对称中的可积场论
- 批准号:
10209209 - 财政年份:1998
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Quantum Field Theories in Low Dimensions and Their Application
低维量子场论及其应用
- 批准号:
06044257 - 财政年份:1994
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Overseas Scientific Survey.
Symmetry breaking and effecto of heavy particles in electro-weak gauge theories
电弱规范理论中重粒子的对称性破缺及效应
- 批准号:
04640298 - 财政年份:1992
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Quantum Theory of Extended Objects and Unification Theory
扩展物体的量子理论与统一理论
- 批准号:
01540246 - 财政年份:1989
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Infinite-dimensional symmetry of exactly solvable models and various physical applications in the finite-size quantum many-body systems
精确可解模型的无限维对称性以及有限尺寸量子多体系统中的各种物理应用
- 批准号:
20540365 - 财政年份:2008
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Level crossings in integrable finite-size quantum systems with infinite-dimensional symmetry and solvable models in nanoscopic or mesoscopic systems
具有无限维对称性的可积有限尺寸量子系统中的能级交叉以及纳米或介观系统中的可解模型
- 批准号:
17540351 - 财政年份:2005
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for the origin of generation of elementary particles based on supersymmetric grand unified theory
基于超对称大统一理论的基本粒子产生起源研究
- 批准号:
11640282 - 财政年份:1999
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on differential operators in infinite dimensional spaces with symmetry
具有对称性的无限维空间微分算子研究
- 批准号:
06452014 - 财政年份:1994
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)