Induced representations of solvable Lie groups and their applications

可解李群的归纳表示及其应用

基本信息

  • 批准号:
    10640177
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

I investigated holomorphically induced representations of solvable Lie groups G from real linear forms f of their Lie algebras and weak polarizations at f. A slightly modified holomorphic induction ρ from f and a positive weak polarization at f is non-zero when G is a connected and simply connected Lie group whose Lie algebra is a normal j-algebra, and f belongs to an open coadjoint orbit. In this case, the decomposition or ρ into irreducible representations can be described in terms of the orbit method, and a distributional Frobenius reciprocity holds. I tried to generalize this results of myself : I studied examples in low dimensional (general) exponential Lie groups. I also reviewed the proof of my previous result mentioned above, and modified some technical parts. I expect that for general exponential groups, holomorphic inductions from positive weak polarizations are described similarly in terms of the orbit method. I was also concerned with holomorphic inductions from complex subalgebras h which are isotropic (not necessarily maximally isotropic) for the bilinear form defined by f when G is nilpotent : I studied low dimensional nilpotent Lie groups. General cases are too complicated to treat, but when h+g(f)c, where g(f) is the Lie algebra of the stabilizer of f, is maximally isotropic, and representations appearing in the decomposition are corresponding to flat orbits, I could describe the decomposition using the orbit method. I will try to generalize it for some class of holomorphic inductions.For problems of "smooth operators" of a Hilbert space where an irreducible representation is realized, I mainly investigated examples in low dimensional exponential groups. For non-unimodular groups, we need to modify the definition of "smooth operators". I plan to find a good definition in order to use it in the theory of Fourier transforms in further research.
我根据李代数的实线性形式 f 和 f 处的弱极化研究了可解李群 G 的全纯诱导表示,当 G 是连通且 f 处的正弱极化时,稍微修改的全纯诱导 ρ 和 f 处的正弱极化非零。简单连接的李群,其李代数是正规的 j-代数,并且 f 属于开共轭轨道 在这种情况下,将 ρ 分解为不可约。表示可以用轨道方法来描述,并且分布弗罗贝尼乌斯互易成立。我尝试推广自己的结果:我研究了低维(一般)指数李群的例子,我还回顾了我之前提到的结果的证明。上面,并修改了一些技术部分,我希望对于一般指数群,正弱极化的全纯归纳可以用轨道方法来类似地描述,我也关心复子代数 h 的全纯归纳。当 G 是幂零时,对于由 f 定义的双线性形式,它们是各向同性的(不一定是最大各向同性):我研究了低维幂零李群,一般情况太复杂而无法处理,但是当 h+g(f)c 时,其中 g( f) 是 f 的稳定子的李代数,是最大各向同性的,分解中出现的表示对应于平坦轨道,我可以使用轨道方法来描述分解,我将尝试。将其推广到一类全纯归纳。对于实现不可约表示的希尔伯特空间的“平滑算子”问题,我主要研究了低维指数群中的例子。对于非幺模群,我们需要修改定义。我计划找到一个很好的定义,以便在进一步的研究中将其用于傅里叶变换理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INOUE Junko其他文献

INOUE Junko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INOUE Junko', 18)}}的其他基金

Constructions of representations of solvable Lie groups and non-commutative Fourier analysis
可解李群表示的构造和非交换傅里叶分析
  • 批准号:
    21540180
  • 财政年份:
    2009
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
  • 批准号:
    15540171
  • 财政年份:
    2003
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constructions and decompositions of induced representations of solvable Lie groups and their applications
可解李群的诱导表示的构造与分解及其应用
  • 批准号:
    12640178
  • 财政年份:
    2000
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

电催化剂表界面内建电场的精准构筑、表征及其诱导增强催化性能的机理研究
  • 批准号:
    22379006
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
噪声诱导耳蜗突触病的固有免疫记忆表征及机制研究
  • 批准号:
    82371151
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
分层切变流体中动量源诱导尾迹自由液面热特征演化机理及参数化表征研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于三维无损表征技术的颗粒诱导形核机制与晶粒长大研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应变诱导钙钛矿薄膜降解行为定量表征及其过程中的损伤演化研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Low-dimensional representation and sensor based estimation of bluff body wakes and vortex induced vibrations
钝体尾流和涡激振动的低维表示和基于传感器的估计
  • 批准号:
    RGPIN-2022-03848
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Discovery Grants Program - Individual
Study of induced representation of reductive Lie groups and Lie algebras
还原李群和李代数的诱导表示研究
  • 批准号:
    18K03322
  • 财政年份:
    2018
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Language-induced event-representation: competition and multiple object instantiation
语言引发的事件表示:竞争和多对象实例化
  • 批准号:
    ES/I000739/1
  • 财政年份:
    2011
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
  • 批准号:
    15540171
  • 财政年份:
    2003
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gray-code representation of real number and the induced computability structure
实数的格雷码表示和导出的可计算性结构
  • 批准号:
    15500010
  • 财政年份:
    2003
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了