Constructions and decompositions of induced representations of solvable Lie groups and their applications
可解李群的诱导表示的构造与分解及其应用
基本信息
- 批准号:12640178
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Holomorphically induced representations of a Lie group are usually constructed starting from a real linear from f of the Lie algebra and a complex polarization at f. In this research, I investigated holomorphically-induced representations of solvable Lie groups from weak polarizations or general complex subalgebra n.First of all, let G be a connected and simply connected Lie group whose Lie algebra is a normal j-algebra. When f belongs to an open coadjoint G-orbit and n is a positive weak polarization at f, the holomorphically-induced representation of G is non-zero if some term o defined by the modular function is suitably chosen. It decomposes into a direct sum of irreducible representations, which is described by the orbit method. In the course of this research, I reviewed and checked again the term o above and the construction of intertwining operators using algebraic structures of normal j-algebras. I revised the paper of the results above, and it has been published.I investigated some cases for low-dimensional exponential groups G and weak polarizations or complex subalgebras n which are isotropic (not necessarily maximally isotropic) for f. In some cases, I actually obtained non-zero representations and decompositions of them. The descriptions of semi-invariant vectors, which are used in computations, essentially depend on each algebraic structure of Lie algebras. I will try to find better descriptions suitable for treating a general setting in further study.For irreducible representations of exponential groups, I also treated another problem to find "good" operators or "good" subspaces of representation spaces which are compatible with the Fourier transforms. I have tried to characterize "good" subspaces by using "smooth operators" introduced by Ludwig, and I plan to proceed with it in further research.
李群的全纯诱导表示通常是从李代数 f 的实线性和 f 处的复极化开始构建的。在这项研究中,我研究了弱极化或一般复子代数 n 中可解李群的全纯诱导表示。首先,令 G 为连通且单连通的李群,其李代数为正规 j 代数。当 f 属于开共交 G 轨道且 n 是 f 处的正弱极化时,如果适当选择由模函数定义的某些项 o,则 G 的全纯诱导表示不为零。它分解为不可约表示的直和,由轨道方法描述。在这项研究的过程中,我再次回顾并检查了上面的o项以及使用正规j代数的代数结构构建交织算子。我修改了上述结果的论文,并已发表。我研究了低维指数群 G 和弱极化或复子代数 n 的一些情况,它们对于 f 是各向同性(不一定是最大各向同性)。在某些情况下,我实际上获得了它们的非零表示和分解。计算中使用的半不变向量的描述本质上取决于李代数的每个代数结构。在进一步的研究中,我将尝试找到适合处理一般设置的更好的描述。对于指数群的不可约表示,我还处理了另一个问题,以找到与傅立叶变换兼容的表示空间的“好”运算符或“好”子空间。我尝试使用路德维希引入的“平滑算子”来表征“好的”子空间,并且我计划在进一步的研究中继续进行。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"J. Funct. Anal.. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"J.Funct.Anal.. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”J.Funct.Anal.. 186. 269-328 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Junko Inoue: "Holomorphically induced representations of solvable Lie groups"Journal of Functional Analysis. (掲載予定).
Junko Inoue:“可解李群的全纯诱导表示”《泛函分析杂志》(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Junko Inoue: "Holomorphically induced representations of some solvable Lie groups"Journal of Functional Analysis. 186. 269-328 (2001)
Junko Inoue:“一些可解李群的全纯诱导表示”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INOUE Junko其他文献
INOUE Junko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INOUE Junko', 18)}}的其他基金
Constructions of representations of solvable Lie groups and non-commutative Fourier analysis
可解李群表示的构造和非交换傅里叶分析
- 批准号:
21540180 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
- 批准号:
15540171 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Induced representations of solvable Lie groups and their applications
可解李群的归纳表示及其应用
- 批准号:
10640177 - 财政年份:1998
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
电催化剂表界面内建电场的精准构筑、表征及其诱导增强催化性能的机理研究
- 批准号:22379006
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
噪声诱导耳蜗突触病的固有免疫记忆表征及机制研究
- 批准号:82371151
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
分层切变流体中动量源诱导尾迹自由液面热特征演化机理及参数化表征研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于三维无损表征技术的颗粒诱导形核机制与晶粒长大研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变诱导钙钛矿薄膜降解行为定量表征及其过程中的损伤演化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Low-dimensional representation and sensor based estimation of bluff body wakes and vortex induced vibrations
钝体尾流和涡激振动的低维表示和基于传感器的估计
- 批准号:
RGPIN-2022-03848 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Discovery Grants Program - Individual
Study of induced representation of reductive Lie groups and Lie algebras
还原李群和李代数的诱导表示研究
- 批准号:
18K03322 - 财政年份:2018
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Language-induced event-representation: competition and multiple object instantiation
语言引发的事件表示:竞争和多对象实例化
- 批准号:
ES/I000739/1 - 财政年份:2011
- 资助金额:
$ 1.41万 - 项目类别:
Research Grant
Harmonic analysis on solvable Lie groups associated with constructions of induced representations
与诱导表示构造相关的可解李群的调和分析
- 批准号:
15540171 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gray-code representation of real number and the induced computability structure
实数的格雷码表示和导出的可计算性结构
- 批准号:
15500010 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)