Analysis of dimensional and recursive properties for almost periodic solutions of nonlinear partial differential equations

非线性偏微分方程几乎周期解的维数和递归性质分析

基本信息

  • 批准号:
    10640178
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

In recent years great efforts have been made to analyze complexity or chaotic behaviors in the study of dynamical systems. In this research we investigate fractal dimensions and recursive properties of orbits for quasi-periodic dynamical systems and then, we apply the abstract results to almost or quasi-periodic solutions for nonlinear partial differential equations. In [1] (of 11.REF.) we estimate correlation dimensions of discrete quasi-periodic orbits by using the parameters derived from some algebraic properties of the irrational frequencies. On the other hand, in [2], we study recursive properties of the quasi-periodic orbits by defining recurrent dimensions and show inequality relations between the correlation dimensions and the recurrent dimensions. To estimate these dimensions we introduce new class of irrational numbers, quasi Roth numbers, quasi or weak Liouville numbers, which are classified according to badly approximable properties or (extremely) good properties for the rational approximations, respectively.Furthermore, in [2] and [3] we investigate quasi-periodic solutions of nonlinear partial differential equations with quasi periodic perturbations and estimate these dimensions of the attractors.Fractal dimensions are most essential in the sense that they show the level of complexity, or selfsimilarity or randomness. On the other hand, it is well known that periodic or almost periodic states occupy the important positions as main gateways in various routes to chaos. In the following papers (of 11.REF.) by the head and co-investigators we have shown various fundamental results, which will play important and essential roles for investigating chaotic behaviors of nonlinear dynamical models.
近年来,在动态系统的研究中,已经做出了巨大的努力来分析复杂性或混乱行为。在这项研究中,我们研究了准周期动力学系统的轨道的分形维度和递归特性,然后,我们将抽象结果应用于非线性部分偏微分方程的几乎或准周期溶液。在[1]中(11.ref。)中,我们通过使用从非理性频率的某些代数属性中得出的参数来估计离散准周期轨道的相关尺寸。另一方面,在[2]中,我们通过定义复发尺寸并显示相关维度与复发尺寸之间的不平等关系来研究准周期轨道的递归特性。 To estimate these dimensions we introduce new class of irrational numbers, quasi Roth numbers, quasi or weak Liouville numbers, which are classified according to badly approximable properties or (extremely) good properties for the rational approximations, respectively.Furthermore, in [2] and [3] we investigate quasi-periodic solutions of nonlinear partial differential equations with quasi periodic perturbations and estimate these dimensions of吸引子。范围的维度最重要的是,它们显示出复杂性,自我相似或随机性的水平。另一方面,众所周知,定期或几乎周期性的状态在各种混乱路线中占据了重要位置。在以下论文(11.ref。)中,我们已经显示了各种基本结果,这将在研究非线性动力学模型的混乱行为方面发挥重要而重要的作用。

项目成果

期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koichiro Naito: "Recurrent dimensions of quasi-periodic orbits with Irrational Frequencies given by quasi Liouville numbers"Proc.WCNA. (to appear). (2000)
Koichiro Naito:“由准刘维尔数给出的具有无理频率的准周期轨道的循环维数”Proc.WCNA。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Taizo Sadahiro: "Dimension estimate for a set obtained from a three-dimensional non-periodic self-affine tiling"Sci.Math.Japon.. vol.4 (to appear). (2001)
Taizo Sadahiro:“从三维非周期自仿射平铺获得的集合的维数估计”Sci.Math.Japon.. vol.4(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Koichiro Naito: "Correlation dimensions of quasi-periodic trajectories for evolution equations"Kokyu-roku R.I.M.S.Kyoto Univ.. 1136. 96-109 (2000)
内藤晃一郎:“演化方程的准周期轨迹的相关维数”Kokyu-roku R.I.M.S.Kyoto Univ.. 1136. 96-109 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoichi Oshima: "Certain ratio limit theorem for time inhomogeneous"Stoch.Processes, Phy.Geom.. 29. 533-538 (2000)
Yoichi Oshima:“时间非齐次的某些比率极限定理”Stoch.Processes, Phy.Geom.. 29. 533-538 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Sadahiro, K.Sakurai: "Construction and coloring of boundaries for non-periodic self-affine tilings"Joho Shori Gakkai Ronbunshi. (to appear).
T.Sadahiro、K.Sakurai:“非周期性自仿射平铺边界的构造和着色”Joho Shori Gakkai Ronbunshi。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAITO Koichiro其他文献

NAITO Koichiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAITO Koichiro', 18)}}的其他基金

Complexity structure analysis on the orbits of solutions of nonlinear partial differential equations by p-adic analysis
基于p-adic分析的非线性偏微分方程解轨道的复杂结构分析
  • 批准号:
    24540180
  • 财政年份:
    2012
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complexity analysis on orbits of solutions of nonlinear partial differential equations
非线性偏微分方程解轨道的复杂性分析
  • 批准号:
    21540191
  • 财政年份:
    2009
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on the fractal structure of complexity solutions for nonlinear differential equations
非线性微分方程复杂解的分形结构分析
  • 批准号:
    18540187
  • 财政年份:
    2006
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on the fractal structure of quasi periodic orbits for nonlinear evolution equations
非线性演化方程准周期轨道的分形结构分析
  • 批准号:
    16540164
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on the structure of quasi periodic attractors for nonlinear partial differential equations
非线性偏微分方程拟周期吸引子结构分析
  • 批准号:
    14540182
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of almost periodic attractors for nonlinear evolution equations
非线性演化方程的近周期吸引子分析
  • 批准号:
    08640221
  • 财政年份:
    1996
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Analysis of almost periodic attractors for nonlinear evolution equations
非线性演化方程的近周期吸引子分析
  • 批准号:
    08640221
  • 财政年份:
    1996
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
US-Federal Republic of Germany Cooperative Research: Almost Periodicity and Asymptotics for Semigroups of Operators
美德合作研究:算子半群的近似周期性和渐近性
  • 批准号:
    8822565
  • 财政年份:
    1989
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Julia Sets, Orthogonal Polynomials, And Almost-Periodicity
数学科学:Julia 集、正交多项式和几乎周期性
  • 批准号:
    8401609
  • 财政年份:
    1984
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Julia Sets, Orthogonal Polynomials, and Almost-Periodicity
数学科学:Julia 集、正交多项式和几乎周期性
  • 批准号:
    8401921
  • 财政年份:
    1984
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了