Asympotic behaviors of spatial critical points and zeros of solutions of parabolic equations
抛物方程空间临界点和解零点的渐近行为
基本信息
- 批准号:10640175
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Level surfaces invariant with time of solutions of diffusion equationsWe consider solutions of the initial-Neumann problem for the heat equation on bounded Lipschitz domains in Euclidean space, and with the help of the classification theorem of isoparametric hypersurfaces in Euclidean space of Levi-Civita (1937) and Segre (1938), we classify the solutions whose isothermal surfaces are invariant with time. Furthermore, we can deal with nonlinear diffusion equations such as the porous medium equation, and we get similar classification theorems.(2) Asymptotic behaviors of the interfaces with sign changes of solutions of the one-dimensional porous medium equationWe consider the Cauchy and the initial-Dirichlet problems for the one-dimensional evolution p-Laplacian equation with p>1 for nonzero, bounded, and nonnegative initial data having compact support. It was shown that after a finite time the set of spatial critical points of the solution u in {u > 0} consists of one point, say x = … More x(t) for time t. In this research, we show that after a finite time x(t) is CィイD11ィエD1 in t. Furthermore, we can deal with generalized porous medium equations with sign changes, and we get CィイD11ィエD1 regularity of the interfaces with sign changes. Also, in the initial-Dirichlet problem for the one-dimensional evolution p-Laplacian equation, we show that there exists a positive constant β=β(ρ) such that x(t)tィイD1-βィエD1 tends to some positive constant as t → ∞.(3) Stationary critical points of the heat flow and the symmetries of the domainsWe consider the initial-Dirichlet problem for the heat equation on bounded and simply connected domains in the plane. By a new method with the help of the Riemann Mapping theorem in complex analysis, we give a characterization of domains invariant under the rotation of angle 2π/3 by making use of the stationary critical points of the heat flow. (Previously, only the characterizations of balls and centrosymmetric domains were obtained.) Furthermore, we consider stationary critical points of the heat flow in sphere SィイD1NィエD1 and in hyperbolic space HィイD1NィエD1, and prove several results corresponding to those in Euclidean space which have been proved in Magnanini and Sakaguchi (1997, 1999). Precisely. We get the characterizations of geodesic balls and centrosymmetric domains by making use of the stationary critical points of the heat flow. Less
(1)与扩散方程的解决方案的水平表面不变,我们考虑欧几里得空间中有界Lipschitz域上热量方程的最初 - Neumann问题的解决方案,并借助Isoparametric Hypersurfaces的分类定理,分类为Levi-Civita(19337)和Segivita(1933)(1933)(1933)(1933)等温表面随时间不变。 Furthermore, we can deal with nonlinear differences equations such as the porous medium equation, and we get similar classification theorems.(2) Asymmetric behaviors of the interfaces with sign changes of solutions of the one-dimensional porous medium equationWe consider the Cauchy and the initial-Dirichlet problems for the one-dimensional evolution p-Laplacian equation with p>1 for nonzero, bounded, and nonnegative initial具有紧凑支持的数据。结果表明,在有限的时间之后,{u> 0}中解决方案u的空间临界点集由一个点组成,例如时间t x =…更多x(t)。在这项研究中,我们表明有限的时间x(t)为t中的CII D11。此外,我们可以处理具有符号变化的通用多孔培养基方程,并且可以通过符号更改获得界面的CII D11 D1规律性。同样,在一维进化P-拉平方程的初始 - 迪里奇问题中,我们表明存在正常常数β=β(ρ),使得x(t)tii d1-βied1趋向于t→∞趋向于t→∞。平面中的域。通过在复杂分析中借助Riemann映射定理的新方法,我们通过利用热流的固定临界点在角度2π/3的旋转下对域不变。 (以前,仅获得了球和中心对称域的特征。)此外,我们考虑了球体中的热流的固定临界点SIE D1NIE D1和多功能空间H1nie D1,并证明了几个结果,与euclidean空间中的那些结果相对应,这些结果已在Magnanini和Sakaguchi(19999999年)中得到证明。恰恰。我们通过利用热流的固定临界点来获得大地球和中心对称域的特征。较少的
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shigeru Sakaguchi: "When are the spatial level surfaces of solutions of diffusion equations invariant with respect to the time variable?"Journal d'Analyse Mathematique. Vol.78. 219-243 (1999)
Shigeru Sakaguchi:“扩散方程解的空间水平面何时相对于时间变量不变?”Journal dAnalyse Mathematique。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeru Sakaguchi: "When are the spatial level surfaces of solutions of diffusion equations in variant with respect to the time variable?"Journal d' Analyse Mathematique. 78. 219-243 (1999)
Shigeru Sakaguchi:“扩散方程解的空间水平面何时相对于时间变量发生变化?”《分析数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeru Sakaguchi: "When are the spatial level surfaces of solutions of diffusion equations invarlant with respect to the time variable?"Journal d' Analyse mathematique. 78. 219-243 (1999)
Shigeru Sakaguchi:“什么时候扩散方程解的空间水平面相对于时间变量是不变的?”《分析数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeru Sakaguchi: "When are the spatial level surfaces of solutions of diffusion equations invariant with respect to the time variable?" J.Analyse Math.,. 印刷中.
Shigeru Sakaguchi:“扩散方程解的空间水平面何时相对于时间变量不变?” J.Analyse Math.,正在出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKAGUCHI Shigeru其他文献
On a two-phase overdetermined problem of Serrin type
Serrin型两相超定问题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
CAVALLINA Lorenzo;MAGNANINI Rolando;SAKAGUCHI Shigeru;CAVALLINA Lorenzo;Cavallina Lorenzo - 通讯作者:
Cavallina Lorenzo
A local analysis of the radial configuration for the two-phase torsion problem in the ball
球内两相扭转问题径向结构的局部分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
CAVALLINA Lorenzo;MAGNANINI Rolando;SAKAGUCHI Shigeru;CAVALLINA Lorenzo;Cavallina Lorenzo;Cavallina Lorenzo;Cavallina Lorenzo - 通讯作者:
Cavallina Lorenzo
On a two-phase shape optimization problem and its related overdetermined problem
关于两相形状优化问题及其相关的超定问题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
CAVALLINA Lorenzo;MAGNANINI Rolando;SAKAGUCHI Shigeru;CAVALLINA Lorenzo - 通讯作者:
CAVALLINA Lorenzo
SAKAGUCHI Shigeru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKAGUCHI Shigeru', 18)}}的其他基金
Geometry of partial differential equations and inverse problems
偏微分方程的几何和反问题
- 批准号:
18H01126 - 财政年份:2018
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Diffusion and Geometry of Domain
域的扩散和几何
- 批准号:
20340031 - 财政年份:2008
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Behavior of spatial critical points and level surfaces of solutions of partial differential equations and shapes of the solutions
偏微分方程解的空间临界点和水平面的行为以及解的形状
- 批准号:
15340047 - 财政年份:2003
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Behavior of spatial critical points and zeros of solutions of partial differential equations
偏微分方程解的空间临界点和零点的行为
- 批准号:
12440042 - 财政年份:2000
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
随机广义多孔介质方程的适定性及渐近性质研究
- 批准号:11901285
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
高度非均质多孔介质中Richards方程的高效数值方法
- 批准号:11901129
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
多孔介质流体流动方程中的块结构线性系统研究
- 批准号:11861059
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
带有非线性项的非局部多孔介质方程长时间行为的研究
- 批准号:11801228
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
偏微分方程的定性与定量均匀化理论及其应用
- 批准号:11701314
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
RGPIN-2019-06103 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
RGPIN-2019-06103 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
RGPIN-2019-06103 - 财政年份:2020
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
RGPIN-2019-06103 - 财政年份:2019
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
DGECR-2019-00206 - 财政年份:2019
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Launch Supplement