RESEARCH OF VALUE DISTRIBUTION OF MEROMORPHIC MAPPINGS

亚形映射的值分布研究

基本信息

  • 批准号:
    10640149
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

The head investigator Mori researched a fewness of meromorphic mapping with defects. He obtained elimination theorems of defects of a meromorphic mapping into PィイD1nィエD1(C) by a small deformation, and also he proved that mappings without defects are dense in a space of transcendental meromorphic mappings. Investigator Toda obtained a unicity theorem for four small meromorphic functions, and also obtained a general form of Nevanlinna's second main theorem for a holomorphic curve into PィイD1nィエD1(C) and hyperplanes in subgeneral position. Nakada studied the local connectedness of Julia sets of hyperbolic rational maps and the number of non-conjugacy classes of non-repelling cycles of rational maps by using quasi-conformal surgery. Sekigawa studied finite order parabolic transformations with a torsion acting on RィイD13ィエD1 by using a Clifford matrix of Maebius transformations. Kazama proved a δδ-Lemma of Kodaira for some class of complex quasi-tori CィイD1nィエD1/Γ. Adachi obtained an extension … More theorem for a boundes holomorphic function on a subvariety V on a analytic polyhedra Ω in CィイD1nィエD1 to one on Ω. Kodama gave a characterization of certain weakly pseudo convex domains by using an extension theorem on holomorphic mappings and CR-mappings and applying Webster's CR-invariant metric, that is, he obtained conditions for which bounded domain in RィイD1nィエD1 is biholomorphic to a generalized complex ellipsoid. Kawamura studied chaotic maps on metric measure space using method of the theory of operator algebras and he obtained some important results concerning chaos and wavelet theory. Sato studied the space of Fourier multipliers on locally compact abelian groups. Also he studied on the transference of continuity from maximal Fourier multiplier operators on RィイD1nィエD1 to those on TィイD1nィエD1. Mizuhara proved the boundedness of commutators between some singular integral operator and multiplication operator by a loccaly integrable function on Morrey spaces with general growth function. Oakayasu obtained a theorem on a multivariable von Neumann's inequality. Less
研究员莫里(Mori)研究了缺陷的鲜明映射。他通过较小的变形得出了仿药映射到PYI D1NIE D1(C)的缺陷的消除定理,并且他也证明,没有缺陷的映射在超验Meromoromormormormormormormormormormorphic映射的空间中密集。研究者TODA获得了四个小的杂型函数的统一定理,并且还获得了Nevanlinna的一般形式,用于将全态曲线置于PYI D1NIE D1(c)和次级属地位的PYI D1NIE D1(C)中。 Nakada研究了朱莉娅双曲合理图的局部连接性,以及使用准共同形式的手术的非偶然图周期的非偶联循环的非偶性类别的数量。 Sekigawa通过使用Maebius变换的Clifford矩阵来研究有限级抛物线抛物线转换,其扭转作用于RYI D13I D1。 Kazama证明了某些复杂的QII CII D1NIE D1/γ的Kodaira的Δδ-胶质。 Adachi获得了一个扩展……在CII D1NIE D1中,在分析多面体上的子变量V上的圆形函数的延伸性更大。 Kodama通过使用有关全体形态映射和CR映射的扩展定理以及应用Webster的CR-CR-CR-Invariant Metric,对某些弱伪凸的域进行了描述,也就是说,他获得了在RIY D1NIE D1中获得有限域的条件。川村工作室使用操作者代数理论的方法在公制测量空间上研究了混沌图,他获得了有关混乱和小波理论的一些重要结果。 Sato研究了本地紧凑的Abelian群体上傅立叶乘数的空间。他还研究了连续性从RIY D1NIE D1上的最大傅立叶乘数运算符转移到TY D1NIE D1上的连续性。 Mizuhara通过在具有一般增长函数的Morrey空间上的本地积分函数在某些单数积分操作员和乘法运算符之间提供了换向器的界限。 Okeasu在多变量冯·诺伊曼(Von Neumann)的不平等现象上获得了定理。较少的

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MORI Seiki,: "Elimination of defects of meromorphic mappings of C^m into P^n(C),"Annales Academie Scientiarum Fennicae, Mathematica. Vol.24. 89-104 (1999)
MORI Seiki,:“消除 C^m 到 P^n(C) 的亚纯映射缺陷”,《Annales Academie Scientiarum Fennicae》,Mathematica。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Kaneko and E. Sato: "Notes on transference of continuity from maximal Fourier operators on RィイD1nィエD1 to those on TィイD1nィエD1"Interdiscriplinary Information Sciences. 4. 97-107 (1998)
M. Kaneko 和 E. Sato:“关于从 RiiD1nIeD1 上的最大傅里叶算子到 TiiD1nieD1 上的最大傅里叶算子的连续性转移的注释”跨学科信息科学 4. 97-107 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Okayasu: "The Lowner-Hienz inequality in Banach *-Algebras."Glasgow Math. J.. 42. 243-246 (2000)
T.Okayasu:“Banach *-代数中的 Lowner-Hienz 不等式。”格拉斯哥数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORI Seiki其他文献

Witten Laplacian on pinned path group and its expected semiclassical behavior
固定路径群上的维滕拉普拉斯算子及其预期的半经典行为
Inhomogeneous ordinary differential equations, local cohomology, And residues
非齐次常微分方程、局部上同调和留数

MORI Seiki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORI Seiki', 18)}}的其他基金

Value distribution theory of meromorphic mappings concerningdefects and its application to uniqueness theorems
缺陷亚纯映射的值分布理论及其在唯一性定理中的应用
  • 批准号:
    18540156
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
QUANTITATIVE RESEARCH OF DEFICIENCIES OF MEROMORPFIC MAPPINGS AND EXCEPTIONAL MAPPINGS
亚形作图和异常作图缺陷的定量研究
  • 批准号:
    15540151
  • 财政年份:
    2003
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH OF A SPACE OF MEROMORPHIC MAPPINGS AND DEFICIENCIES
亚形映射空间和缺陷的研究
  • 批准号:
    12640150
  • 财政年份:
    2000
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Geometry of the flat tori in the sphere and non- linear wave equations
球面平面环面的几何形状和非线性波动方程
  • 批准号:
    15540059
  • 财政年份:
    2003
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
QUANTITATIVE RESEARCH OF DEFICIENCIES OF MEROMORPFIC MAPPINGS AND EXCEPTIONAL MAPPINGS
亚形作图和异常作图缺陷的定量研究
  • 批准号:
    15540151
  • 财政年份:
    2003
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of the flat tori in the 3-sphere and its higher dimensional generalization
3-球面平面环面的几何形状及其高维推广
  • 批准号:
    12640059
  • 财政年份:
    2000
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH OF A SPACE OF MEROMORPHIC MAPPINGS AND DEFICIENCIES
亚形映射空间和缺陷的研究
  • 批准号:
    12640150
  • 财政年份:
    2000
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了