Good filtrations and rings of invariants

良好的过滤和不变量环

基本信息

  • 批准号:
    10640017
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

Through the research done in the last academic year, more or less we achieved the objective on the fundamental research on homological behavior of equivariant modules. In this academic year, we published a monograph in English including the technical part of that homological research. The monograph includes a theory which unifies the Cohen-Macaulay approximation theory over a Cohen-Macaulay ring with canonical modules by Auslander-Buchweitz and the theory of Δ-good approximations over quasi-hereditary algebras by Ringel.Moreover, continued from the last academic year, we were trying to enrich the theorem which asserts that if a connected reductive group G acts on a polynomial algebra S linearly, and if S admits good filtrations as a G-module, then the ring of invariants S^G is strongly F-regular. Since the condition that a polynomial algebra admits good filtrations is always true in characteristic zero, and the condition is Zariski open, S^G is of strongly F-regular type in characteristic zero. As the strong F-regular type property is stronger than rationality of singularities, the theorem is not included in Boutot's well-known theorem. On the other hand, in order to study Gorenstein property of invariant subrings in positive characteristics, it is necessary to investigate the behavior of canonical modules. For this purpose, we proved the Grothendieck duality theorem with respect to equivariant proper morphisms, and constructed the equivariant version of twisted inverse pseudofunctors which are necessary to state the equivariant duality theorem. Moreover, utilizing them, we partly succeeded in modifying the results on Gorenstein property of invariant subrings in characteristic zero by Knop to positive characteristics. These results were announced at domestic and international meetings, and the abstracts were published. Moreover, we got some results on behavior of F-rationality with respect to flat morphisms, and it has been published.
通过上一学年的研究,我们或多或少地达到了对等变模块的同源行为进行基础研究的目标。本学年,我们出版了一本英文专着,其中包括同源研究的技术部分。包括将 Cohen-Macaulay 环上的 Cohen-Macaulay 近似理论与 Auslander-Buchweitz 的规范模统一起来的理论以及准遗传上的 Δ-good 近似理论此外,从上一学年开始,我们试图丰富这个定理,该定理断言,如果一个连通的还原群 G 线性地作用于多项式代数 S,并且如果 S 承认作为 G 模的良好过滤,那么不变量环 S^G 是强 F 正则的,因为多项式代数允许良好过滤的条件在特征零中始终为真,并且该条件为 Zariski。开,S^G在特征零上是强F-正则类型,由于强F-正则类型性质比奇点的有理性更强,因此该定理不包括在著名的Boutot定理中。为了研究正特征中不变子环的 Gorenstein 性质,有必要研究规范模的行为。为此,我们证明了关于等变真值的格罗滕迪克对偶定理。态射,并构造了扭曲逆伪函子的等变版本,这是陈述等变对偶定理所必需的。此外,利用它们,我们部分成功地将 Knop 的关于特征零不变子环的 Gorenstein 性质的结果修改为正特征。在国内和国际会议上发表了论文,并发表了摘要。此外,我们还得到了一些关于F-有理性关于平态射的行为的结果,并且已经发表。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitsuyasu Hashimoto: "Homological aspects of equivariant modules"in Commutative Algebra, Algebraic Geometry, and Computational Methods, (D.Eisenbud ed.). 259-302 (1999)
Mitsuyasu Hashimoto:《交换代数、代数几何和计算方法》中的“等变模的同调方面”(D.Eisenbud 编辑)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuyasu Hashimoto: "Equivariant twisted inverse pseudo-functors without equivariant compactification."第21回可換環論シンポジウム報告集. 120-127 (2000)
Mitsuyasu Hashimoto:“无等变紧化的等变扭曲逆伪函子。”第 21 届交换代数理论研讨会报告 120-127 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuyasu Hashimoto: "Auslander-Buchweitz Approximations of Equivariant Modules"Cambridge University Press. 281 (2000)
Mitsuyasu Hashimoto:“等变模的 Auslander-Buchweitz 近似”剑桥大学出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuyasu Hashimoto: "Good filtrations of symmetric algebras and strong F-regularity of invariant subrings"Math.Z.. (in press).
Mitsuyasu Hashimoto:“对称代数的良好过滤和不变子环的强 F 正则性”Math.Z..(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuyasu Hashimoto: "Equivariant twisted inverse pseudo-functors without equivariant compactification"第21回可換環論シンポジウム報告集. 120-127 (2000)
Mitsuyasu Hashimoto:“无等变紧化的等变扭曲逆伪函子”第 21 届交换代数理论研讨会报告 120-127 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HASHIMORO Mitsuyasu其他文献

HASHIMORO Mitsuyasu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Tc-99m标记的含有双生物还原基团的乏氧显像剂研究
  • 批准号:
    21071010
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
含有氧化还原基团有机功能分子的合成、自组装及物性研究
  • 批准号:
    20873015
  • 批准年份:
    2008
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

Organobismuth Compounds As Universal Precursors for Oxidative and Reductive Radical Group Transfer via Photoredox Catalysis
有机铋化合物作为通过光氧化还原催化进行氧化和还原基团转移的通用前体
  • 批准号:
    10231424
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
Organobismuth Compounds As Universal Precursors for Oxidative and Reductive Radical Group Transfer via Photoredox Catalysis
有机铋化合物作为通过光氧化还原催化进行氧化和还原基团转移的通用前体
  • 批准号:
    10463570
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
Symmetry breaking operators
对称破缺算子
  • 批准号:
    17J02884
  • 财政年份:
    2017
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reductive elimination with main-group element compounds: From trihydrides to hydrides
主族元素化合物的还原消除:从三氢化物到氢化物
  • 批准号:
    314084445
  • 财政年份:
    2016
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grants
Reductive elimination from high valent platinum group metal complexes
高价铂族金属络合物的还原消除
  • 批准号:
    400164-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了