Functional Logic Programming with Distributed Constraint Solving System
分布式约束求解系统的函数逻辑编程
基本信息
- 批准号:10480053
- 负责人:
- 金额:$ 6.4万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our contributions are (i) development of computation models for functional logic programming languages with distributed constraint solving systems and (ii) realization of a programming environment based on the computation models.(i) Design of computation modelsWe started the research project with the design of a computation model called Lazy Narrowing Calculus (LNC). LNC forms the basis of our investigation into all our computation models for functional and logic programming. To deal with constraint solving in functional logic programming languages, we extended LNC to the conditional case. The resulting calculus is called Lazy Conditional Narrowing Calculus (LCNC). Moreover, we removed the non-determinism inherent in LCNC. This simplifies the implementation of the calculus on computers and improves the computational efficiency.Furthermore we designed higher-order calculi, i.e. Applicative LNC, which simulates higher-order computation by using (first-order) applicative terms for representing terms, and Higher-Order Lazy Narrowing Calculus (LNff), which can handle lambda terms. We proved that all the above-mentioned calculi have completeness.(ii) Implementation of the programming systemWe implemented a functional logic programming system in a distributed environment. The system is called Constraint Functional Logic Programming system (CFLP). CFLP consists of three components : an interpreter, a scheduler, and a constraint solving system. We implemented CFLP as a distributed software system using the programming language Mathematica. The computation mechanism of CFLP is based on the narrowing calculi. The interpreter of the functional logic programming language in CFLP system solves given equations by accessing constraint solvers in a distributed environment. The narrowing calculi find solutions over the domain of term algebra. The other domain-specific constants and operations are handled by the constraint solvers which provide the domain-specific solving methods.
我们的贡献是(i)开发具有分布式约束求解系统的函数逻辑编程语言的计算模型,以及(ii)基于计算模型的编程环境的实现。(i)计算模型的设计我们开始了该研究项目的设计称为惰性缩小微积分(LNC)的计算模型。 LNC 构成了我们研究所有函数和逻辑编程计算模型的基础。为了处理函数逻辑编程语言中的约束求解,我们将 LNC 扩展到条件情况。由此产生的演算称为惰性条件缩小演算 (LCNC)。此外,我们消除了 LCNC 固有的非确定性。这简化了微积分在计算机上的实现,提高了计算效率。此外,我们设计了高阶微积分,即Applicative LNC,它通过使用(一阶)应用项来表示项来模拟高阶计算,以及Higher-Order惰性缩小微积分 (LNff),可以处理 lambda 项。我们证明了上述所有演算的完备性。 (ii)编程系统的实现我们在分布式环境下实现了一个函数式逻辑编程系统。该系统称为约束功能逻辑编程系统(CFLP)。 CFLP 由三个组件组成:解释器、调度器和约束求解系统。我们使用编程语言 Mathematica 将 CFLP 实现为分布式软件系统。 CFLP的计算机制基于窄化演算。 CFLP系统中函数逻辑编程语言的解释器通过访问分布式环境中的约束求解器来求解给定的方程。缩小演算在项代数领域找到解决方案。其他特定于域的常量和运算由提供特定于域的求解方法的约束求解器处理。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Minamide: "Space-Profiling Semantics of the Call-by-Value Lambda Calculus and the CPS Transformation"Proc.3rd International Workshop on Higher-Order Operational Techniques in Semantics,ENTCS. 26. 103-118 (1999)
Y.Minamide:“按值调用 Lambda 演算和 CPS 转换的空间剖析语义”Proc.第三届语义学高阶运算技术国际研讨会,ENTCS。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Ohsaki, A. Middeldorp, T. Ida: "Persistence of Equational Term Rewriting Systems"Computer Software. 16(1). 33-45 (1999)
H. Ohsaki、A. Middeldorp、T. Ida:“方程项重写系统的持久性”计算机软件。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Minamide: "Space-Profiling Semantics of the Call-by Value Lambda Calculus and the CPS Transformation"Proc. 3rd International Workshop on Higher-Order Operational Techniques in Semantics, ENTCS 26. 103-118 (1999)
Y. Minamide:“调用值 Lambda 演算和 CPS 转换的空间剖析语义”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Keller: "On the Distributed Implementation of Aggregate Data Structures by Program Transformation" Proc.4th HIPS. LNCS (to appear). (1999)
G.Keller:“通过程序转换实现聚合数据结构的分布式实现”Proc.4th HIPS。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mircea Marin and Wolfgang Schreiner: "CFLP:a Mathematica Implementation of a Distributed Constraint Solving System"Proc.3rd International Mathematica Symposium (IMS'99). (1999)
Mircea Marin 和 Wolfgang Schreiner:“CFLP:分布式约束求解系统的 Mathematica 实现”Proc.第三届国际数学研讨会 (IMS99)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IDA Tetsuo其他文献
IDA Tetsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IDA Tetsuo', 18)}}的其他基金
Development of methods for computational origami based on geometric algebra
基于几何代数的计算折纸方法的发展
- 批准号:
16K00008 - 财政年份:2016
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards 3D computational oeigami - theory and software development
迈向 3D 计算 oeigami - 理论和软件开发
- 批准号:
25330007 - 财政年份:2013
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formalization of origami and origami-programming based on algebraic graph rewriting
基于代数图重写的折纸形式化和折纸编程
- 批准号:
22650001 - 财政年份:2010
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Modeling and verification of web software based on theories symbolic computation
基于符号计算理论的Web软件建模与验证
- 批准号:
20300001 - 财政年份:2008
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symbolic Computation and Symbolic Computing Grid Based on the Interaction of Provers, Solvers and Reduces
基于证明者、求解者和约简交互的符号计算和符号计算网格
- 批准号:
17300004 - 财政年份:2005
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global computing by networked equational constraint solvers
通过网络方程约束求解器进行全局计算
- 批准号:
12480066 - 财政年份:2000
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
computation model for higher-order functional-logic languages
高阶函数逻辑语言的计算模型
- 批准号:
08458059 - 财政年份:1996
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
design and implementation of multimedia programming environment with functional-logic languages
函数式逻辑语言多媒体编程环境的设计与实现
- 批准号:
07558152 - 财政年份:1995
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of Conditional Rewrite Systems to Declarative Programming Languages
条件重写系统在声明式编程语言中的应用
- 批准号:
06680300 - 财政年份:1994
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Systematic Construction of Declarative Programming Systems
声明式编程系统的系统构建
- 批准号:
03680022 - 财政年份:1991
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
基于时钟约束建模语言CCSL的实时嵌入式系统形式化验证与分析
- 批准号:61872146
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于最大约束可满足性的过载实时系统最优调度算法研究
- 批准号:61806171
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于符号-数值混合计算方法的复杂混成系统验证研究
- 批准号:61602348
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
考虑交流潮流安全约束的随机确定性耦合电力系统机组组合模型及数值求解方法研究
- 批准号:51607104
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
三维几何约束系统的逼近最优分解理论与并行求解方法
- 批准号:51505446
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A handwritten Japanese historical Kana reprint Support System based on pattern recognition and constraint solving
基于模式识别和约束求解的手写日语历史假名重印支持系统
- 批准号:
16K00463 - 财政年份:2016
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of a Carepartner-Integrated Telehealth Rehabilitation Program for Persons with Stroke - NICHD K-23
中风患者护理人员综合远程医疗康复计划的评估 - NICHD K-23
- 批准号:
9265104 - 财政年份:2015
- 资助金额:
$ 6.4万 - 项目类别:
Evaluation of a Carepartner-Integrated Telehealth Rehabilitation Program for Persons with Stroke - NICHD K-23
中风患者护理人员综合远程医疗康复计划的评估 - NICHD K-23
- 批准号:
9481294 - 财政年份:2015
- 资助金额:
$ 6.4万 - 项目类别:
Global computing by networked equational constraint solvers
通过网络方程约束求解器进行全局计算
- 批准号:
12480066 - 财政年份:2000
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of Fuzzy Inference System with AI-Neuro Based Autonomous Learning Abilities and Verification of Its Effectiveness
基于人工智能神经自主学习能力的模糊推理系统构建及其有效性验证
- 批准号:
03650349 - 财政年份:1991
- 资助金额:
$ 6.4万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)