computation model for higher-order functional-logic languages

高阶函数逻辑语言的计算模型

基本信息

  • 批准号:
    08458059
  • 负责人:
  • 金额:
    $ 2.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

Experiences with functional programming show that higher-order concept leads to powerful and succinct programming. Functional-logic programming, an approach to integrate functional and logic programming, would naturally be expected to incorporate the notion of higher-order-ness. Little has been investigated how to incorporate higher-order-ness in functional-logic programming. The aim of our research project is to provide theoretical foundation for higher-order functional-logic programming. Our result in this project are enumerated as follows.1.By a close examination on computation in a first-order narrowing calculus LNC (Lazy Narrowing Calculus), we eliminated non-determinism on the selection of applicable inference rules, which lead a design of new calculus called LNCd (deterministic Lazy Narrowing Calculus). LNCd is much efficient in speed compared to LNC dueto determinism on the selection of applicable inference rules.2.We proposed a new proof method for standardization theorem. Thi … More s theorem is known as a theoretical foundation for lazy evaluation mechanism in functional programming languages. Using this theorem we obtained more effcient first-order narrowing mechanism.3.We gave semantics for the following three families of functional-logic programming languages : many-sorted first-order languages, interactive first-order languages and simply typed applicative languages. We formulated syntax of these functional-logic languages using equational logic. Semantics given as interpretation of equations. We have shown the rigorous relationship between axiomatic, algebraic, operational and categorical semantics in order to show correctness of these semantics.4.We proposed a higher-order narrowing calculus HLNC (Higher-order Lazy Narrowing Calculus) implementing higher-order narrowing for higher-order term rewriting systems. HLNC is derived from a first order narrowing calculus with the employment of the techniques for the implementation of efficient narrowing mechanism described above. Since this calculus allows the presence of lambda terms in TRSs, it provides computation model for higher-order functional-logic languages with lambda terms. Less
函数式编程的经验表明,高阶概念可以带来强大而简洁的函数式编程,这是一种集成函数式和逻辑编程的方法,人们自然会期望将高阶性的概念纳入其中。如何将高阶性融入函数式逻辑编程中。我们的研究项目的目的是为高阶函数式逻辑编程提供理论基础。我们在这个项目中的结果列举如下:1.通过仔细的检查。关于一阶计算缩小演算 LNC(惰性缩小演算),我们消除了适用推理规则选择上的非确定性,这导致了一种称为 LNCd(确定性惰性缩小演算)的新演算的设计,由于其确定性,与 LNC 相比,速度效率更高。适用的推理规则的选择。2.我们提出了一种新的标准化定理证明方法。该定理被称为懒惰评估机制的理论基础。使用这个定理,我们提供了更高效的一阶缩小机制。3.我们给出了以下三个函数逻辑编程语言家族的语义:多排序一阶语言、交互式一阶语言​​我们使用等式逻辑作为方程的解释来制定这些功能逻辑语言的语法,我们已经展示了公理语义、代数语义、运算语义和分类语义之间的严格关系。 4.我们提出了一种高阶窄化演算 HLNC (Higher-order Lazy Narrowing Calculus),为高阶术语重写系统实现高阶窄化 HLNC 是从一阶窄化演算导出的。由于该演算允许 TRS 中存在 lambda 项,因此它为具有 Less 的高阶函数逻辑语言提供了计算模型。

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Yamada et al.: "Logicality of Conditional Rewrite Systems" Proceedings of the 22nd International Colloquium on Trees in Algebra and Programming(CAAP'97). LNCS1214. 141-152 (1997)
T.Yamada 等人:“条件重写系统的逻辑性”第 22 届国际代数和编程树研讨会论文集 (CAAP97)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Q.Li: "Minimised Geomtric Buchberger Al-gorithm:An Optimal Algebraic Algorithm for Integer Programming" Proc.of ISSAC'97. 331-338 (1997)
Q.Li:“最小化几何布赫伯格算法:整数规划的最优代数算法”Proc.of ISSAC97。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.M.T.Chakravarty et al.: "A Computational Model for Constraint Functional-Logic Programming" 第14回日本ソフトウエア科学会大会論文集. 301-304 (1997)
M.M.T.Chakravarty 等人:“约束功能逻辑编程的计算模型”第 14 届日本软件科学学会会议记录 301-304 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Middeldorp et al: "Transforming Termination by Self-Labelling" Proc.of the 13th Int.Conf.on Automated Deduction. LNAI 1104. 373-387 (1996)
A.Middeldorp 等人:“通过自我标签转变终止”Proc.of the 13th Int.Conf.on Automated Deduction。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
I.Durand et al: "Decidable Call by Need Computations in Term Rewriting" Proc.of 14th International Conference on Automated Deduction. LNAI 1249. (1997)
I.Durand 等人:“术语重写中需要计算的可判定调用”第 14 届国际自动演绎会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IDA Tetsuo其他文献

IDA Tetsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IDA Tetsuo', 18)}}的其他基金

Development of methods for computational origami based on geometric algebra
基于几何代数的计算折纸方法的发展
  • 批准号:
    16K00008
  • 财政年份:
    2016
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards 3D computational oeigami - theory and software development
迈向 3D 计算 oeigami - 理论和软件开发
  • 批准号:
    25330007
  • 财政年份:
    2013
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formalization of origami and origami-programming based on algebraic graph rewriting
基于代数图重写的折纸形式化和折纸编程
  • 批准号:
    22650001
  • 财政年份:
    2010
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Modeling and verification of web software based on theories symbolic computation
基于符号计算理论的Web软件建模与验证
  • 批准号:
    20300001
  • 财政年份:
    2008
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Symbolic Computation and Symbolic Computing Grid Based on the Interaction of Provers, Solvers and Reduces
基于证明者、求解者和约简交互的符号计算和符号计算网格
  • 批准号:
    17300004
  • 财政年份:
    2005
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global computing by networked equational constraint solvers
通过网络方程约束求解器进行全局计算
  • 批准号:
    12480066
  • 财政年份:
    2000
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Functional Logic Programming with Distributed Constraint Solving System
分布式约束求解系统的函数逻辑编程
  • 批准号:
    10480053
  • 财政年份:
    1998
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
design and implementation of multimedia programming environment with functional-logic languages
函数式逻辑语言多媒体编程环境的设计与实现
  • 批准号:
    07558152
  • 财政年份:
    1995
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Application of Conditional Rewrite Systems to Declarative Programming Languages
条件重写系统在声明式编程语言中的应用
  • 批准号:
    06680300
  • 财政年份:
    1994
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Systematic Construction of Declarative Programming Systems
声明式编程系统的系统构建
  • 批准号:
    03680022
  • 财政年份:
    1991
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

基于入演算、组合逻辑和图归约技术的函数式语言系统
  • 批准号:
    69073329
  • 批准年份:
    1990
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了