On Combinatorial Properties for a given point set in Euclidean space
欧几里得空间中给定点集的组合性质
基本信息
- 批准号:09640292
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied some combinatorial properties for a given point set in the research project ; grant-in-aid for scientific research (C). In particular, we studied the problem on partitioning point set into disjoint convex polygons. Our paper "On a partition into convex polygons" which accepted the international journal : Discrete Applied Mathematics in 1996, introduced three partitioning properties ; Disjoint partition, Empty partition and General partition. Moreover we proved the result on the disjoint partition problem in space, it was also accepted the international journal : Computational Geometry : Theory and Applications. We gave the lecture concerning these partition problems on Ninth Canadian Conference on Computational Geometry at Queen's University in August 1997. Some researchers are interested in these problems and we talked about some related problems. In 1998, we have succeeded to improve the bound for disjoint partition problem with Professor K.Hosono who is one of the in … More vestigators in this research project, so we submitted such paper to the international journal in January 1998. In this paper, we introduced new method. Using this method, we were able to estimate the maximum number of disjoint convex quadrilaterals for a given point set. It is new and interesting. Professor G.Karolyi who is a Hungarian mathematician, studied the related problem that is the general partition into convex quadrilaterals, but nobody studies this problem. We submitted the paper concerning this problem to the international journal in July 1998 and gave the lecture on Tenth Canadian Conference on Computational Geometry at McGill University in August 199g.On the other hand, we also studied the related problem that is the existence of a convex polygon containing a specified number of points with Professor K.Hosono and Professor D.Avis at McGill University. We gave the lecture on Third Joint Meeting of the American Mathematical Society and the Sociedad Matematica Mexicana in December 1997 and submitted the paper to the special issue of Discrete Mathematics in honor of Helge Tverberg. Moreover, we gave the lecture concerning the special case of this problem on Japan Conference on Discrete and Computational Geometry '98 in December 1998 and we are preparing the new paper about it now. Less
我们已经研究了研究项目中给定点设置的一些组合性能。科学研究授予(C)。特别是,我们研究了将分区点设置为脱节凸多边形的问题。我们的论文“关于凸多边形的分区”,该论文接受了《国际杂志:1996年的离散应用数学》,引入了三个分区属性;脱节分区,空分区和通用分区。此外,我们证明了空间中的不相交分区问题的结果,它也被接受了国际期刊:计算几何:理论和应用。我们于1997年8月在皇后大学举行的第九加拿大计算几何学会议上进行了有关这些分区问题的讲座。一些研究人员对这些问题感兴趣,我们谈到了一些相关问题。在1998年,我们成功地与K.Hosono教授的脱节分区问题改善了,后者是该研究项目中更多的遗物者之一,因此我们于1998年1月向国际期刊提交了该论文。在本文中,我们引入了新方法。使用此方法,我们能够估算给定点集的最大分离凸四次凸出数量。这是新有趣的。 G.Karolyi教授是匈牙利数学家,研究了相关的问题,该问题是凸四方的一般分区,但没有人研究这个问题。我们将有关此问题的论文提交了1998年7月的国际日报,并在8月199日在麦吉尔大学举行的第十届加拿大计算几何学会议上进行了演讲。另一方面,我们还研究了相关问题,该问题是存在凸多边形的相关问题,该问题包含了与K.Hosono教授和McGill大学教授的指定积分数量。我们于1997年12月就美国数学学会和墨西哥社会Matematica Sociedad Matematica进行了第三次联合会议的演讲,并将论文提交了离散数学特刊,以纪念Helge Tverberg。此外,我们在1998年12月在日本离散和计算几何学'98会议上发表了有关此问题的特殊情况的讲座,现在我们正在准备有关此问题的新论文。较少的
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
D.Avis,K.Hosono and M.Urabe: "On the Existence of a Point Subset with a Specified Number of Interior Points" Special issue of Discrete Mathematics in honour of Helge Tverberg. to appear(印刷中).
D.Avis、K.Hosono 和 M.Urabe:“论具有指定数量内点的点子集的存在”离散数学特刊,以纪念 Helge Tverberg(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D.Avis, K.Hosono and M.Urabe: "On the Existence of a Point Subset with a Specified Number of Interior Points" Special issue of Discrete Mathematics in honour of Helge Tverberg. (to appear).
D.Avis、K.Hosono 和 M.Urabe:“论具有指定数量内点的点子集的存在”离散数学特刊,纪念 Helge Tverberg。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Urabe: "Partitioning point sets in space into disjoint convex polytopes" Conputational Geomety: Theory and Applications. to appear(印刷中).
M.Urabe:“将空间中的点集划分为不相交的凸多面体”《计算几何:理论与应用》即将出版(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Fujii,A.Nakamura et al.: "On the excess of sets of complex exponentials" Proceedings of the American Mathematical Society. (to appear). (1998)
N.Fujii,A.Nakamura 等人:“论复指数集的过剩”美国数学会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D.Avis, K.Hosono and M.Urabe: "On the Existence of a Point Subset with a Specified Number of Interior Points" to appear in Special issue of Discrete Mathematics in honor of Helge Tverberg.
D.Avis、K.Hosono 和 M.Urabe:“On the Existence of a Point Subset with a Specified Number of Interior Points” 出现在离散数学特刊上,以纪念 Helge Tverberg。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
URABE Masatsugu其他文献
URABE Masatsugu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('URABE Masatsugu', 18)}}的其他基金
Combinatorial properties on convex sets by a finite point set
有限点集凸集的组合性质
- 批准号:
21540145 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial properties on convex polygons by a point set
点集凸多边形的组合属性
- 批准号:
13640137 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
江汉平原土壤性状异质性与监控样点设置优化研究
- 批准号:40801078
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Increasing the Value of Genomic Medicine through Private Pharmacogenomic Reporting
通过私人药物基因组报告增加基因组医学的价值
- 批准号:
10760119 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
- 批准号:
10621489 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Evaluating the feasibility of an innovative point-of-care screening tool for detection of infant motor delay within the newborn period
评估用于检测新生儿时期婴儿运动迟缓的创新护理点筛查工具的可行性
- 批准号:
10742419 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别: