Qualitative studies of solutions to elliptic equations in unbounded domains

无界域中椭圆方程解的定性研究

基本信息

项目摘要

(1) Oscillation criteria for elliptic equations : Effective oscillation criteria are established for second-order quasilinear elliptic equations whose leading terms are degenerate Laplacians. Our method is based on comparison principles and asymptotic theory for quasilinear ordinary differential equations. For one-dimensional case, useful information about numbers of zeros of solutions is obtained via the generalized Prufer transformation.(2) Liouville-type theorems and nonexistence of positive solutions of BVPs : Lioville-type theorems are established for quasilinear elliptic equations whose leading terms are degenerate Laplacians and (generalized) mean curvature operators. Our results can be regarded as a natural extension of classical Liouville theorem.(3) Symmetry of positive solutions for elliptic problems : We prove by means of the moving plane method or moving sphere method that positive solutions of elliptic equations of certain types are radially symmetric. Useful information about self-similar solutions of parabolic problems can be derived from our results.(4) Two-parameter eigenvalue problems : Two-parameter nonlinear Sturm-Liouville problems are considered. The existence of the variational eigenvalues is established. Asymptotic formulas of eigenvalues and eigenfunctions are obtained.(5) Asymptotic theory for solutions of elliptic systems : Semilinear elliptic systems are considered. We establish nonexistence criteria of positive solutions, Liouville-type theorems, and oscillation criteria.)
(1)椭圆方程的振荡标准:为二阶准线性椭圆方程式建立了有效的振荡标准,其主要术语是退化的laplacians。我们的方法基于准线性分化方程的比较原理和渐近理论。对于一维情况,通过广泛的普劳转换获得了有关解决方案零的有用信息。(2)liouville-type定理和BVPS阳性解决方案的不存在:lioville-type定理的阳性解决方案是对准椭圆形方程式确定的,其主要椭圆形方程的主要术语是变性的,并且具有普通的laplac和普通级别(普遍)。我们的结果可以被视为经典liouville定理的自然扩展。(3)椭圆形问题的阳性溶液的对称性:我们通过移动平面方法或移动球方法证明某些类型的椭圆方程的阳性溶液是辐射对称的。有关抛物线问题的自相似解决方案的有用信息可以从我们的结果中得出。(4)两参数特征值问题:两参数非线性sturm sturm-liouville问题。建立了变异特征值的存在。获得了本征值和本征函数的渐近公式。(5)考虑到椭圆系统溶液的渐近理论:半线性椭圆系统。我们建立了积极解决方案,liouville型定理和振荡标准的不存在标准。)

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Matsumoto: "On ν-distal flows on 3-manifolds" Bull.London Math.Soc.29. 609-616 (1997)
S.Matsumoto:“论 3 流形上的 ν 远端流”Bull.London Math.Soc.29 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kusahara et al: "A barrier method for quasilinear ordinary differential equations of the curvature type" Czechoslovak Math.J.(to appear).
T.Kusahara 等人:“曲率型拟线性常微分方程的障碍法”Czechoslovak Math.J.(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Shibata: "Nonlinear multiparameter eigenvalue problems on general level sets" Nonlinear Anal.29. 823-838 (1997)
T.Shibata:“一般水平集上的非线性多参数特征值问题”非线性分析.29。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Elbert: "Singular eigenvalue problems for second order linear ordinary differential equations" Arch.Math.(Brno). 34・1. 59-72 (1998)
A.Elbert:“二阶线性常微分方程的奇异特征值问题”Arch.Math.(Brno) 59-72 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Elbert et al: "Singular eigenvalue problems for second order linear ordinary differential equations" Arch.Math. (Brno). 34-1. 59-72 (1998)
A.Elbert 等人:“二阶线性常微分方程的奇异特征值问题”Arch.Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 19 条
  • 1
  • 2
  • 3
  • 4
前往

USAMI Hiroyuki的其他基金

Asymptotic Analysis of quasilinear ordinary differential equations and its application to asymptotic analysis of elliptic equations
拟线性常微分方程的渐近分析及其在椭圆方程渐近分析中的应用
  • 批准号:
    23540196
    23540196
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of nonlinear ordinary differential equations and its applications
非线性常微分方程的渐近分析及其应用
  • 批准号:
    14540177
    14540177
  • 财政年份:
    2002
  • 资助金额:
    $ 1.02万
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of ordinary differential equations, and its application to partial differential equations
常微分方程的渐近分析及其在偏微分方程中的应用
  • 批准号:
    12640179
    12640179
  • 财政年份:
    2000
  • 资助金额:
    $ 1.02万
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Studies on Eigenvalue Problems of Nonlinear Elliptic Equations
非线性椭圆方程特征值问题的研究
  • 批准号:
    10640208
    10640208
  • 财政年份:
    1998
  • 资助金额:
    $ 1.02万
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Degenerate Sobolev Inequalities and the P-Laplacian
退化索博列夫不等式和 P-拉普拉斯算子
  • 批准号:
    480486-2015
    480486-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
    $ 1.02万
  • 项目类别:
    University Undergraduate Student Research Awards
    University Undergraduate Student Research Awards
THE STUDY OF NON-LINEAR PHENOMENA BY THE ASYMPTOTIC ANALYSIS
非线性现象的渐近分析研究
  • 批准号:
    11640124
    11640124
  • 财政年份:
    1999
  • 资助金额:
    $ 1.02万
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
THE MATHEMATICAL ANALYSIS TO NON-LINEAR PHENOMENA THROUGH NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS
非线性偏微分方程对非线性现象的数学分析
  • 批准号:
    09640276
    09640276
  • 财政年份:
    1997
  • 资助金额:
    $ 1.02万
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)