Studies on Eigenvalue Problems of Nonlinear Elliptic Equations
非线性椭圆方程特征值问题的研究
基本信息
- 批准号:10640208
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Eigenvalue Problems of Elliptic Equations : Two-parameter eigenvalue problems for semilinear elliptic equations are studied. We establish asymptotic properties of (variational) eigenvalues and eigenfunctions. Two-parameter Ambrosetti-Prodi problems are also studied. We investigate the relation between parameters and the number of solutions.(2) Positive Solutions of Elliptic Equations : Semilinear second-order elliptic euations are considered in unbounded domains. We establish multiplicity results for positive solutions and uniqueness theorems for positive solutions.(3) Positive Solutions of Quasilinear Ordinary Differential Equations : Quasilinear ordinary differential equations whose leading term is one-dimensionai pseudo-Laplacian are considered. We obtain asynrptotic representations of positive solutions. As an application of these results, we show existence of several types of positive solutions of exterior Dirichlet problems for quasilinear elliptic equations.(4) Mathematical Models Describing Aggregation Phenomena of Molds : We consider self-similar solutions of parabolic systems introduced by Keller and Segel to describe aggregation phenomena of molds due to chemotaxis. We clarify the relation between parameters and the number of self-similar solutions.(5) Nonnegative Nontrivial Solutions of Quasilinear Elliptic Equations and Elliptic Systems : We establish necessary and/or sufficient conditions for quasilinear elliptic equations, as well as quasilinear elliptic systems, to possess nontrivial nonnegative entire solutions. Several Liouville type theorems are also obtained.
(1)椭圆方程的特征值问题:研究半参数椭圆方程的特征值问题。我们建立了(变化)特征值和特征功能的渐近特性。还研究了两参数Ambrosetti-Prodi问题。我们研究了参数与溶液数量之间的关系。(2)椭圆方程的正解:在无界域中考虑了半连续的二阶椭圆形效率。 (3)准线性普通微分方程的阳性解:准线性的普通微分方程的阳性解决方案的阳性解决方案的阳性解决方案,其主要术语是一定术语是一二二曲 - 拉普拉曲霉。我们获得了阳性溶液的异步表示。作为这些结果的应用,我们显示了用于准线性椭圆方程的外部差异问题的几种类型的正溶液。(4)描述霉菌聚集现象的数学模型:我们考虑由Keller和Segel引入的抛物面系统的自相似溶液来描述用于化学型模型的聚合现象。我们阐明了参数与自相似解决方案的数量之间的关系。(5)准线性椭圆方程和椭圆系统的非负非平地解决方案:我们为准椭圆形方程式建立了必要和/或足够的条件,以实现quasilineareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareareare的条件。还获得了几种liouville型定理。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Adachi: "Four positive solutions for the semilinear elliptic equations:-△u+u=a(x)u^p+f(x) in R^N"Calculus of Variations and Partial Differential. (印刷中).
S.Adachi:“半线性椭圆方程的四个正解:R^N 中的-△u+u=a(x)u^p+f(x)”变分和偏微分(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Adachi: "Four positive solutions for the semilinear elliptic equation : -Δμ + μ = a(x)μィイD1ρィエD1 + f(x) in RィイD1NィエD1."Calculus of Variations and Partial Differential Equations. (to appear).
S. Adachi:“半线性椭圆方程的四个正解:-Δμ + μ = a(x)μIID1ρieD1 + f(x) in RiiiD1NieD1。”变分和偏微分方程的微积分。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田中和永: "Uniqueness of positive radial solutions of semilinear elliptic equations in R^N and Sere's non-degeneracy condition" Communications in Partial Differential Equations. (発表予定).
Kazunaga Tanaka:“R^N 和 Sere 的非简并条件下半线性椭圆方程的正径向解的唯一性”偏微分方程中的通信(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Muramoto: "Existence of self-similar solutions to a parabolic system modelling chemotaxis"Hiroshima Math.J.. (印刷中).
N. Muramoto:“抛物线系统建模趋化性的自相似解的存在”Hiroshima Math.J.(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Naito: "Oscillation criteria for quasilinear elliptic equations"Nonlineat Anal.. (印刷中).
Y.Naito:“拟线性椭圆方程的振荡准则”Nonlineat Anal..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
共 24 条
- 1
- 2
- 3
- 4
- 5
USAMI Hiroyuki的其他基金
Asymptotic Analysis of quasilinear ordinary differential equations and its application to asymptotic analysis of elliptic equations
拟线性常微分方程的渐近分析及其在椭圆方程渐近分析中的应用
- 批准号:2354019623540196
- 财政年份:2011
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of nonlinear ordinary differential equations and its applications
非线性常微分方程的渐近分析及其应用
- 批准号:1454017714540177
- 财政年份:2002
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of ordinary differential equations, and its application to partial differential equations
常微分方程的渐近分析及其在偏微分方程中的应用
- 批准号:1264017912640179
- 财政年份:2000
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Qualitative studies of solutions to elliptic equations in unbounded domains
无界域中椭圆方程解的定性研究
- 批准号:0964019209640192
- 财政年份:1997
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
相似国自然基金
分数阶椭圆与抛物型方程解的对称性和单调性研究
- 批准号:12301264
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带临界指数椭圆方程解的性质研究
- 批准号:12371111
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非光滑区域上具有高对比系数椭圆方程及带剧烈振荡位势薛定谔型方程的均匀化定量理论
- 批准号:12371096
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
椭圆方程约束最优控制问题自适应有限元算法的收敛性研究
- 批准号:12301472
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
含一般位势函数及临界指标的非局部椭圆型方程多解的存在性
- 批准号:12301129
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Quasilinear Elliptic Differential Equations of Critical Nonlinear Growth
临界非线性增长的拟线性椭圆微分方程
- 批准号:1654019716540197
- 财政年份:2004
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Boundary value problems for higher-order nonlinear ordinary differential equations
高阶非线性常微分方程的边值问题
- 批准号:1534004815340048
- 财政年份:2003
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Global solution structure and the stability of nonlocal nonlinear second order boundary value problems with definite integrals
非局部非线性二阶定积分边值问题的全局解结构与稳定性
- 批准号:1554022015540220
- 财政年份:2003
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research on quasilinear elliptic equations with rapidly growing principal parts
主部快速增长拟线性椭圆方程研究
- 批准号:1454021114540211
- 财政年份:2002
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
A synthetic study of positive solutions to elliptic and parabolic partial differential equations
椭圆型和抛物型偏微分方程正解的综合研究
- 批准号:1344004213440042
- 财政年份:2001
- 资助金额:$ 1.15万$ 1.15万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)