Study of noncommutative probability and noncommutative entropy
非交换概率和非交换熵的研究
基本信息
- 批准号:09640152
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two major trends in recent development of operator algebras are subfactor theory initiated by V.F.R. Jones and free probability theory created by D. Voiculescu. Related with these we studied noncommutative probability theory and noncommutative entropy theory in the present research. Also, we studied norm inequalities and trace inequalities for operators and matrices. Results obtained are summarized in the following :1. When a group G is acting on an inclusion N ⊂ M of factors with finite index, the standard invariant of the crossed product N × G ⊂ M × M is compared with that of N ⊂ M. Moreover, in a joint work with Masaki Izumi (Kyoto Univ.), amenability and strong amenability of general fusion algebras are investigated on the model of the subfactor case.2. Large deviation principle for random matrices and free entropy were studied jointly with D. Petz (Hungary). We discussed maximization problems for one-variable free entropy under various constraints, and systematically investigated the large deviation principle for the empirical eigenvalue density of random matrices. Moreover, we established the relation among three types of free entropies defined for noncommutative random variables which are selfadjoint, non-selfadjoint and unitary, respectively, and applied it to the additivity and the maximization problems of free entropy.3. A series of investigations were made for norm inequalities and trace inequalities for Hilbert space operators (in particular matrices). In a joint work with Tsuyoshi Ando (Hokusei Gakuen Univ.), we investigated what is the matrix (or trace) Holder inequality. Jointly with Ando and Okubo (Hokkaido Univ. of Education) we discuss trace inequalities for multiple products of two matrices. Jointly with Hideki Kosaki (Kyushu Univ.), we obtained norm inequalities refining the arithmetic-geometric mean inequality for unitarily invariant norms.
近期运营商代数开发的两个主要趋势是V.F.R.发起的亚比例理论。琼斯和自由概率理论由D. voiculescu创建。与这些相关的我们研究了本研究中的非交通概率理论和非交通性熵理论。此外,我们研究了运营商和物质的规范不平等和追踪不平等现象。所获得的结果总结在以下内容中:1。当G组对具有有限指数的因子的纳入n⊂M时,将交叉产品N×G g gg⊂m×M的标准不变性与N⊂MM. M. Masaki Izumi(Masaki izumi(Kyoto Univ。)的共同作品进行了比较。与D. Petz(匈牙利)共同研究了随机物品和自由熵的大偏差原理。我们讨论了在各种约束下对单变量自由熵的最大化问题,并系统地研究了随机物品的经验特征值密度的大偏差原理。此外,我们分别为非交换性随机变量定义的三种类型的自由熵之间建立了关系,这些变量分别是自偏,非偏爱和单一的,并将其应用于自由熵的添加性和最大化问题3。对希尔伯特太空经营者(特别是物质)的规范不平等和痕迹不平等进行了一系列投资。在与Tsuyoshi Ando(Hokusei Gakuen Univ)的联合合作中,我们研究了矩阵(或痕量)持有人不平等的是什么。与Ando和Okubo(北海道大学)共同讨论了两种物品的多种产品的痕迹不平等。我们与Hideki Kosaki(Kyushu Univ。)共同获得了规范不平等,以完善单位不变规范的算术几何平均值。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F.Hiai: "Properties of free entropy related polar decomposition"Comm.Math.Phys.. 202. 421-444 (1999)
F.Hiai:“与极分解相关的自由熵的性质”Comm.Math.Phys.. 202. 421-444 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
F. Hiai: "Log-majorizations and norm inequalities for exponential operators"Linear Operators, Banach Center Publications. Vol. 38. 119-181 (1997)
F. Hiai:“指数算子的对数优化和范数不等式”线性算子,巴拿赫中心出版物。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ando: "Holder type inequalities for matrices"Math. Ineq. Appl.. 1. 1-30 (1998)
T.Ando:“矩阵的持有者型不等式”数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
F.Hiai: "Amenability and strong amenability for fusion algebras with applications to subfactor theory" Internat.J.Math.(印刷中). (1998)
F.Hiai:“融合代数的适用性和强适用性及其在子因子理论中的应用”Internat.J.Math.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D. Petz and F. Hiai: "Logarithmic energy as an entropy functional"Advances in Differential Equations and Mathematical Physics, E. Carlen et al. (eds.), Cotemp. Math., Amer. Math. Soc.. Vol. 217. 205-221 (1998)
D. Petz 和 F. Hiai:“作为熵函数的对数能量”微分方程和数学物理进展,E. Carlen 等人。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIAI Fumio其他文献
HIAI Fumio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIAI Fumio', 18)}}的其他基金
Study of inequalities and variational principle in free probability theory
自由概率论中的不等式和变分原理研究
- 批准号:
21540208 - 财政年份:2009
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of free probability and operator algebras based on random matrices
基于随机矩阵的自由概率与算子代数研究
- 批准号:
17340043 - 财政年份:2005
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of noncommutative analysis and free probability theory on operator algebras
算子代数的非交换分析和自由概率论研究
- 批准号:
14540198 - 财政年份:2002
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Probability theory and statistics on a noncommutative topological monoid of strings and their application to bioremediation
非交换拓扑幺半群的概率论和统计及其在生物修复中的应用
- 批准号:
16KT0020 - 财政年份:2016
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic Structures in Noncommutative Probability Theory: Towards Construction and Classification of Notions of Independence
非交换概率论的基本结构:独立概念的构建和分类
- 批准号:
15K13446 - 财政年份:2015
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A new concept of independence in noncommutative probability theory.
非交换概率论中独立性的新概念。
- 批准号:
DE150100030 - 财政年份:2015
- 资助金额:
$ 1.86万 - 项目类别:
Discovery Early Career Researcher Award
Exploring Information Geometrical Methods in Noncommutative Probability Theory
探索非交换概率论中的信息几何方法
- 批准号:
22340019 - 财政年份:2010
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of noncommutative analysis and free probability theory on operator algebras
算子代数的非交换分析和自由概率论研究
- 批准号:
14540198 - 财政年份:2002
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)