Braid invariant for periodic points of surface maps and its applications
曲面图周期点的辫状不变量及其应用
基本信息
- 批准号:09640115
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the topological structure of the set of periodic points for embeddings of a 2-dimensional disk to itself, by exploiting the braid invariant, which is one of the topological invariants defined for periodic points. Our results are the following :1. Thurston's theory has shown that if the embedding has a periodic point which is topologically complicated (i.e., its braid invariant has a pseudo-Anosov component in its decomposition), then there exist infinitely many periodic points. We proved that if P(n), the set of periodic points with period less than or equal to an integer n, is topologically complicated, then P(n) has at least 2n+3 points.2. When P(n) has at most 2n+2 points, the above result shows that this set is topologically simple. In this case, we determined all the possible forms of the braid invariant of P(n).3. We studied fixed points from a viewpoint different from the above, and obtained the following :(1) Using the notion of a braid, we introduced an equivalence relation on the fixed point set, and proved that the braid invariant of each equivalence class is of a simple type. This implies that the study of the structure of the fixed point set is divided into two parts: the study of the property of each equivalence class and that of how the equivalence classes are combined together.(2) We proved that the fixed point index of each equivalence class is less than two. As an application of this result, we studied the relationship between the topological property and stability of fixed points, and showed that every equivalence class with at least two points must contain an unstable fixed point. Moreover, we showed that the number of equivalence classes having an unstable fixed point is greater than that of the equivalence classes containing no unstable fixed points.
我们通过利用辫子不变式来研究了二维磁盘本身嵌入的周期点的拓扑结构,这是定义为周期性点定义的拓扑不变的之一。我们的结果如下:1。 Thurston的理论表明,如果嵌入具有拓扑复杂的周期点(即,其辫子不变性在其分解中具有伪 - anosov组件),那么存在无限的周期性点。我们证明,如果p(n)(p(n)的周期点小于或等于整数n)在拓扑上是复杂的,那么p(n)至少具有2n+3点。2。当p(n)最多具有2N+2点时,以上结果表明该集合在拓扑上很简单。在这种情况下,我们确定了p(n).3的辫子不变的所有可能形式。我们从与上述不同的视点研究了固定点,并获得了以下内容:(1)使用辫子的概念,我们在固定点集上引入了等价关系,并证明了每个等价类的辫子不变性是一个简单的类型。这意味着对固定点集的结构的研究分为两个部分:每个等价类别的特性的研究以及如何将等价类组合在一起。(2)我们证明了每个等效类的固定点索引小于两个。作为此结果的应用,我们研究了固定点的拓扑特性和稳定性之间的关系,并表明每个具有至少两个点的等效类都必须包含一个不稳定的固定点。此外,我们表明,具有不稳定固定点的等效类的数量大于没有不稳定固定点的等效类的数量。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takashi Matsuoka: "On the linking structure of periodic orbits for embeddings on the disk"Math.Japonica. (印刷中).
Takashi Matsuoka:“关于磁盘上嵌入的周期轨道的连接结构”Math.Japonica(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Matsuoka: "Periodic points of disk homcomorphisms having a pseudoAnosov component"Hokkaido Math.J.. 27. 423-455 (1998)
Takashi Matsuoka:“具有伪阿诺索夫分量的圆盘同态的周期点”Hokkaido Math.J.. 27. 423-455 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiromichi Matstulaga: "Homology groups of Yang-Mills noduli spaces"Proc.Korea-Japan Conf.on Transformation Group Theory. 85-90 (1997)
Hiromichi Matstulaga:“Yang-Mills 结节空间的同调群”Proc.Korea-Japan Conf.on Transformation Group Theory。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Matsuoka: "On the linking structure of periodic orbits for embeddings on the disk"Math.Japonica. (発表予定).
Takashi Matsuoka:“关于磁盘上嵌入的周期轨道的连接结构”Math.Japonica(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Matsuoka: "Periodic points of disk homeomorphisms having a pseudo-Anosov component"Hokkaido Math. J.. 27-2. 423-455 (1998)
Takashi Matsuoka:“具有伪阿诺索夫分量的圆盘同胚的周期点”北海道数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUOKA Takashi其他文献
MATSUOKA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUOKA Takashi', 18)}}的其他基金
Development of red-color emission based on nitride semiconductor for white lighing
开发基于氮化物半导体的红色发光白光照明
- 批准号:
24560362 - 财政年份:2012
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Novel Neutron Reflectometer with IR-RAS for Understanding of Adsorption Mechanism of Friction Modifier Additives
开发带有 IR-RAS 的新型中子反射计,用于了解摩擦改进剂添加剂的吸附机制
- 批准号:
23360078 - 财政年份:2011
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structural Analysis of Metal-Lubricant Interface by Means of Neutron Reflectometry
中子反射法金属-润滑剂界面的结构分析
- 批准号:
20360080 - 财政年份:2008
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effect of Surface Energies of DLC Films to Ito Tribological Properties under Lubricated Condition
润滑条件下DLC膜表面能对Ito摩擦学性能的影响
- 批准号:
18560144 - 财政年份:2006
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of fixed point theory to bifurcation problems
不动点理论在分岔问题中的应用
- 批准号:
15540081 - 财政年份:2003
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological invariants for periodic points of torus maps
环面图周期点的拓扑不变量
- 批准号:
13640079 - 财政年份:2001
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
热力学表述的二维异质界面分子插层嵌入和微结构演化的分子模拟研究
- 批准号:22378185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于局域量子振动嵌入框架模拟界面二维和频光谱
- 批准号:22372068
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向嵌入式存储的二维层状相变材料原位研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向嵌入式存储的二维层状相变材料原位研究
- 批准号:62204201
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
离子嵌入二维材料的力学行为及原位测试研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Reconstruction of 2 and 3-dimensional closed manifolds by equi-dimensional stable maps and classification of embedding or immersion lifts
通过等维稳定图重建 2 维和 3 维闭流形以及嵌入或浸没提升的分类
- 批准号:
25800032 - 财政年份:2013
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
VALIDATION AND QUANTIFICATION OF FFPE ANTIGEN RETRIEVAL BY PROTEOME ANALYSIS
通过蛋白质组分析验证和定量 FFPE 抗原回收
- 批准号:
7503795 - 财政年份:2006
- 资助金额:
$ 1.54万 - 项目类别: