Algebro-geometric studies of rational singularities and related singularities by blowing-ups

通过爆炸对有理奇点和相关奇点进行代数几何研究

基本信息

项目摘要

On the main theme of this project :(1)In 1997, M.Tomari found more 3 examples of simple K3 singularities which do not belong to the famous 95 classess. It was a natural continuation of studies of previous year. Tomari also found a. counter example to an analogus conjecture of M.Reid about 4-dimensional terminal singularities in terms of Newton boundary. In the both studies, the theory of filtered blowing-up by Tomari-Watanabe plays an essential role. In 1998, Tomari succeeded to prove the criterion about the rational singularities and isolated singularities about the Segre product of two normal graded rings. The criterions are natural generalizations to those for the normal graded rings in terms of Pinkham-Demazure's construction.(2)T.Hayakawa studied several partial resolutions of 3-dimensional terminal singularities by weighted blowing-ups. In particular he succeded to show a special corespondence between the set of divisorial blowing-ups with minimal discrepancy and the set of the maximal blowing-ups with "big weight". He classified the elementary contraction with the minimal discrepancy in his situation.(3)M.Takamura gave a very good estiamte about the arithemetic genus of normal two-dimensional singularities of multiplicity two in terms of the Horikawa canonical resolution. Combined with the previous result of Tomari, he obtained the complete classification of the case of p_<alpha> = 2.As related works on complex analysis :(4)K.Morita studied the special log forms which gives a-basis of higher dimensional de Rham cohomology which is related to the arrangements of hyperfurface on the complex affine space. The work is aimed to give application to integral representaion of hypergeomeric functions of several variables and a natural generalization of Aomoto-Kita's theory.
在该项目的主题上:(1)在1997年,M.Tomari找到了更多的3个简单K3奇点的例子,这些例子不属于著名的95级课。这是上一年研究的自然延续。托马里也发现了一个。在牛顿边界方面,M.Reid的类似物猜想的示例。在这两项研究中,托马里·沃塔纳布(Tomari-Watanabe)过滤吹传的理论都起着至关重要的作用。 1998年,托马里(Tomari)成功地证明了有关两个正常分级环的segre产物的理性概念和孤立的奇异性的标准。这些标准是对普通分级环的结构来对正常分级环的自然概括。(2)T.Hayakawa通过加权吹式爆破研究了几种三维终端奇异性的部分分辨率。特别是,他成功地展示了与最小差异的一组分区爆破与以“大重量”的最大爆炸量之间的特殊对比。 (3)M.Takamura将基本收缩归类为最小的差异。结合了托马里(Tomari)的先前结果,他获得了p_ <alpha> = 2的完整分类。这项工作的目的是将几个变量的高晶函数的整体代表和对aomoto-kita理论的自然概括进行应用。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Morishita and T.Watanabe: "On 5-Hardy Littlewood homogeneous spaces." Intern.J Math. vol 9. 723-757 (1998)
M.Morishita 和 T.Watanabe:“关于 5-Hardy Littlewood 均质空间。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Morishita and T.Watanabe: "On S-Hardy-Littlewood homogeneous spaces" Intern J.Math.vol.9. 723-757 (1998)
M.Morishita 和 T.Watanabe:“论 S-Hardy-Littlewood 齐次空间” Intern J.Math.vol.9。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Kodama: "A characterization of certain weakly pseudoconvex domain" Tohoku Math.J.vol 51to appear. 未定 (1999)
A.Kodama:“某些弱赝凸域的表征”Tohoku Math.J.vol 51 待定(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Morita: "On the basis of twisted de Rham cohawology" Hokkaido Math. J.vol.27. 567-603 (1998)
K.Morita:“基于扭曲的 de Rham cohawology”北海道数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Hayakawa: "Blowing ups of 3-dimensional terminal singularities" Publ.Res.Inst.Math.Sci.Kyoto Univ.to appear.
T.Hayakawa:“3维终端奇点的爆炸”Publ.Res.Inst.Math.Sci.Kyoto Univ.出现。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 17 条
  • 1
  • 2
  • 3
  • 4
前往

TOMARI Masataka的其他基金

Classification of isolated singularities by means of algebraic geometric studies of invariants
通过不变量的代数几何研究对孤立奇点进行分类
  • 批准号:
    18540051
    18540051
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Filtered blowing-up of local rings and algebraic geometric classification of singularities
局部环的滤波放大和奇点的代数几何分类
  • 批准号:
    16540043
    16540043
  • 财政年份:
    2004
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Filtered blowing-up of singularities and algebraic geometric properties of tangent cone
奇点的过滤吹胀和正切锥体的代数几何性质
  • 批准号:
    14540017
    14540017
  • 财政年份:
    2002
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Classification of higher dimensional hypersurface singularities in terms of non-degenerate complete intersections
根据非简并完全交集对高维超曲面奇点进行分类
  • 批准号:
    12640020
    12640020
  • 财政年份:
    2000
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

音乐哲理性概念的加工及其神经机制
  • 批准号:
    31500876
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

潜在的自尊心の概念的理解の促進と測定法の性質の検討
促进对内隐自尊的概念理解并审视测量方法的本质
  • 批准号:
    24K06449
    24K06449
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
組織の健全性とは何か-高信頼性組織理論と心理的安全性概念からの研究
什么是组织健康?从高可靠性组织理论和心理安全观研究
  • 批准号:
    24K05039
    24K05039
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
    2247702
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Standard Grant
    Standard Grant
偶然性概念の哲学史的・概念史的研究:現代の諸課題の再文脈化の試みへ向けて
关于偶然性概念的哲学和概念历史研究:尝试重新语境化当代问题
  • 批准号:
    23H00559
    23H00559
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
高校生物における概念理解の個人特性を反映したストーリーの活用に関する実証的研究
反映高中生物概念理解个体特征的故事使用的实证研究
  • 批准号:
    22KJ0423
    22KJ0423
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
    Grant-in-Aid for JSPS Fellows