Research on Vector and Parallel Processing of Computer Algebra Algorithms and Distributed and Cooperative Processing
计算机代数算法向量并行处理及分布式协同处理研究
基本信息
- 批准号:07680337
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall subject of this research project is the application of vector and/or parallel processing to computational algebra. It is expected to enable us, by making full use of the superior computing power and rich resources of high-performance computers in symbolic and algebraic computation, to perform ultimate-scale symbolic calculations in practice. The following lists the brief descriptions of the major research results.1. The latest algorithms for distinct degree factorization of polynomials over finite fields, which can be regarded as a break-down method for large-scale problems of polynomials with very high degrees, and their complexities are investigated very deeply. As its result, a simple method for improvement is found. Furthermore, by noticing the obvious algebraic independences in the algorithms, the investigator has developed a new algorithm for parallel processing, taking account of communication latency as well. The result of this work is presented at ISSAC'96 and publ … More iched in the proceedings.2. The new algorithm for sparse multivariate polynomial interpolation, developed by the investigator a few years ago, was revisited and examined to make its description and analysis more complete. The paper of this work was published in the special issue on parallel symbolic computation of Journal of Symbolic Computation.3. In recent yers, research on the classical problem of integer GCD calculation has been activated, aiming mainly at its parallel processing, and a few new algorithms are published. In this project, the investigator implemented some of those algorithms in Risa/Asir, to verify their much-improved performance. This implementation is further applied to the Grobner basis calculation for solving a system of algebraic equations, and we observed 6-8% reduction of computing time for solving a realistic large-scale problem. Furthermore, the research group of Risa/Asir has succeeded in computing a very large scale problem related with Grobner basis calculation, which have never veen completed till then in the world, using our new implementation and their thchnology of distributed processing. In their paper, it is reported that out new implementation, along with their idea for removal of integer contents from the intermediate polynomials, contributed very much to the success.4. Nowadays, it has been becoming a common recognition that the use of the asymptotically fast algorithms for polynomial operations is practical and necessary when treating large scale polynomials. In this project, some of the algorithms are implemented empirically, to be used in the calculations listed here. Through this development and empirical study, the investigator has learned various implementation techniques for attaining practical efficiency.5. By optimizing the exiting asymptotically fast algorithm, the investigator developed a new fast algorithm for polynomial multipoint evaluation, which is used in various polynomial calculations such as distinct degree factorization. At the same time, its parallelization, with communication latency being taken into account, is considered. A paper on this work is submitted and accepted for presentation at PASCO'97, and its implementation in KLIC for parallel processing is in progress.As for distributed and cooperative processing, the minimal but sufficient functions of Risa/Asir, realized by the developer during the term of this project, are used, and no further dovelopment is done by the investigator, because he has recognized that further mathematical studies and development of parallel algorithms will be of much more importance, rather than the sofrware development at this point of time. Less
向矢量和/或并行处理在计算代数中的总体主题,通过充分利用高级高性能计算机的卓越计算能力和丰富的符号和代数计算机的资源在实践中,符号的计算。研究人员也开发了沟通延迟的算法。符号计算的Mbolic计算3。 ,为了验证其经过改进的性能。与Grobner基础相关成功。4。开发了一种用于多项式多点评估的新快速算法,该评估用于不同程度的分解,并将通信潜伏期置于Anto Octure。由开发人员在该项目期间实现的Risa/Asir使用了,研究人员没有进一步完成,已经认识到,并非平行算法的进一步数学研究和开发将更加宽松,而不是SOFR Warever of the Sofr Warever时间点少
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
村瀬裕一: "多項式因数分解へのスーパーコンピュータの応用" 第4回数式処理学会大会('95.6月5日〜7日@奈良女子大). (口頭発表).
Yuichi Murase:“超级计算机在多项式分解中的应用”数学处理学会第四届会议(95 年 6 月 5 日至 7 日@奈良女子大学)(口头报告)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
村尾裕一: "Risa/Asivの整数GCD計算の改良" ワークショップ「数式処理システムとその応用」(愛媛大学工学部,平成8年3月). (口頭発表).
Yuichi Murao:“Risa/Asiv 的整数 GCD 计算的改进”研讨会“公式处理系统及其应用”(爱媛大学工学院,1996 年 3 月)(口头报告)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
村尾裕一: "多項式演算の並列高速アルゴリズムと並列DDFアルゴリズムへの応用" 京都大学数理解析研究所 短期共同研究 「Researches Algorithms for Coputer Algebra」 集会,講究録用原稿. (準備中).
村尾佑一:“多项式运算在并行高速算法和并行DDF算法中的应用”京都大学数学科学研究所短期联合研究“计算机代数的研究算法”会议,讲稿手稿(准备中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fujise,T.and Murao,H.: "Parallel Distinct Degree Factorization Algorithm" Roc.ISSAC'96. 18-25 (1996)
Fujise,T. 和 Murao,H.:“并行不同程度分解算法”Roc.ISSAC96。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
村尾,藤瀬: "並列処理の多項式計算への応用(解説論文)" 数式処理. Vol.5,No.1. 2-17 (1996)
Murao,Fujise:“并行处理在多项式计算中的应用(解释性论文)”《数学处理》第 5 卷,第 1 期(1996 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURAO Hirokazu其他文献
MURAO Hirokazu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURAO Hirokazu', 18)}}的其他基金
Research on data-parallel integer processing with high-precision and high-performance
高精度高性能数据并行整数处理研究
- 批准号:
26330144 - 财政年份:2014
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on multi-core oriented parallel algorithms and implementation techniques for seminumerical processing
面向多核的半数值处理并行算法及实现技术研究
- 批准号:
22500011 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for practical use of fast algorithms for computer algebra and software development
计算机代数和软件开发快速算法的实际应用研究
- 批准号:
14580365 - 财政年份:2002
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer Algebra and Supercomputing
计算机代数和超级计算
- 批准号:
05680266 - 财政年份:1993
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
光子系统多自由度并行远程量子信息处理研究
- 批准号:62365002
- 批准年份:2023
- 资助金额:36 万元
- 项目类别:地区科学基金项目
面向大规模深度神经网络的云边端协同并行处理框架与体系结构研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
联想计算和多记忆存储并行的SBT忆阻突触类脑信息处理研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
面向高通量卫星多频段微波信号光域并行处理的方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向边缘决策智能的自适应并行处理体系结构与协同调度机制研究
- 批准号:62172151
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Travel: NSF Student Travel Grant for 2023 International Conference on Parallel Processing (ICPP)
旅行:2023 年国际并行处理会议 (ICPP) 的 NSF 学生旅行补助金
- 批准号:
2329410 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Evaluation and optimization of NWB neurophysiology software and data in the cloud
NWB 神经生理学软件和云数据的评估和优化
- 批准号:
10827688 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Circuit maturation and function in postnatal primate retina
灵长类动物出生后视网膜的电路成熟和功能
- 批准号:
10642337 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别: