A study of the dynamics of a family of antipolynomials
反多项式族动力学研究
基本信息
- 批准号:07640258
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We call the connectedness locus of the family f_c (z) =z^^<-d>+c of antipolynomials the multicorn.We have shown that Julia sets depend continuously with respect to Hausdorff metric throughout the closure of hyperbolic components of odd periods, hence that immediate basins of attracting cycles converge to those of parabolic cycles. We have also shown that parabolic arcs do not intersect themselves, that closures of distinct parabolic arcs intersect only at cusp points, that the 0-Ecalle height point on the arc is a land point of an internal ray of angle 0 and its converse. Using these facts, we have shown that critical value maps are branched coverings of degree d+1 over the open unit disk.We have shown that the multicorn is not locally connected near the main hyperbolic component and that it is not locally pathwise connected near the principal parabolic arcs of maximally tuned hyperbolic components of odd periods not on the arcs of symmetry.We have shown that, on the boundary of hyperbolic components of odd periods, the holomorphic indices of parabolic cycles are real and diverge to +* as the parameter approaches a cusp point and antiholomorphic bifurcation occurs outside hyperbolic components if the index is greater than 1.We have calculated the Grotzsch defects of fixed points and 2-periodic points of polynomials P_c (z) =z^d+c and have shown their continuity.
我们称之为家庭f_c(z)= z ^^ <-d>+c的连接基因座,多方人表明,朱莉娅集合在整个奇数周期的超曲式成分封闭的封闭中,相对于hausdorff指标,奇怪的时期的整个奇数群,因此吸引了cycles concles conc cyc cyc cyc cycc cyc cyc cyc cyc cyc cyc cycc cyc cycc cycc cyc cycc cycc cyc cycc cycc cyc cyc cyccecscement的闭合。我们还表明,抛物线弧不会与自身相交,即仅在牙孔点上闭合不同的抛物线弧,即弧上的0-ecalle高度点是角度0的内部射线的陆点及其相反。使用这些事实,我们已经表明,临界值图是开放单元磁盘上D+1的分支覆盖物。我们表明,多层并未在主要的双曲线成分附近局部连接,并且它在最大值的奇数超级抛物性时期的主抛物性弧附近并未在原理抛物线附近连接到对称符号的最大调谐量。 periods, the holomorphic indices of parabolic cycles are real and diverge to +* as the parameter approaches a cusp point and antiholomorphic bifurcation occurs outside hyperbolic components if the index is greater than 1.We have calculated the Grotzsch defects of fixed points and 2-periodic points of polynomials P_c (z) =z^d+c and have shown their continuity.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shizuo Nakane: "Bifurcation along Arcs in Antihdomorphic Dynamics" Science Bulletin Josai Univ.Special lssue. 1. 89-97 (1997)
Shizuo Nakane:“反同态动力学中沿弧的分岔”科学公报城西大学特刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Nakane: "On Grotzsch defects." Acad.Rep.Fac.Eng.Tokyo Inst.Polytech.Vol.20. 1-13 (1997)
S.Nakane:“论 Grotzsch 缺陷。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中根 静男: "ある種のBaker領域について" Acad.Rep.Fac.Eng.Tokyo Inst.Polytech.19. 23-30 (1996)
Shizuo Nakane:“关于某些贝克区域”Acad.Rep.Fac.Eng.Tokyo Inst.Polytech.19 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中根静男: "Mandelbrot集合の外射線の到達性について" 数理解析研究所講究録. (発表予定). (1997)
Shizuo Nakane:“论曼德尔布罗特集的外部射线的可达性”数学分析研究所的 Kokyuroku(即将出版)(1997 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Nakane and D.Schleicher: "Non-local connectivity of the tricorn and multicorns." Int.Conf.Dyn.Sys.& Chaos. Vol.1. 200-203 (1995)
S.Nakane 和 D.Schleicher:“三角角和多角的非局部连接。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKANE Shizuo其他文献
NAKANE Shizuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKANE Shizuo', 18)}}的其他基金
A study on the dynamics of two dimensional polynomial skew products
二维多项式斜积动力学研究
- 批准号:
21540203 - 财政年份:2009
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the dynamics of the family of complex cubic polynomials
复三次多项式族动力学研究
- 批准号:
17540177 - 财政年份:2005
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the dynamics of cubic polynomials (on the topological structure of the parameter space)
三次多项式动力学研究(关于参数空间的拓扑结构)
- 批准号:
11640218 - 财政年份:1999
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Multicorn as an Example of Regulation of Proteolytic Activities of Large Complexes on a Molecular Level
以多角蛋白为例在分子水平上调节大型复合物的蛋白水解活性
- 批准号:
9906434 - 财政年份:1999
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant