Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
基本信息
- 批准号:RGPIN-2021-02715
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-stationarity, high-dimensionality and nonlinearity are widely recognized as the three major challenges for time series analysis in the big data era. These complicated data structures arise frequently when a large number of stochastic processes are simultaneously recorded over a relatively long period of time. The complexity of the data prevents researchers and practitioners from using the classical time series approaches, such as the stationary ARMA theory and methodology. The long-term objective of the proposed research is two-fold. First, a systematic theoretical foundation for the modelling and inference of a large class of high-dimensional and non-stationary (HDNS) time series in both time and spectral domains will be established from a nonlinear system point of view. Second, based on the aforementioned theoretical foundation, a robust, adaptive and computationally efficient methodological toolbox for the estimation, inference and prediction of HDNS temporal systems stemmed from various important applications will be built. In the short term, theoretically, the main focus will be on establishing systematic Gaussian approximation theory and auto-regressive approximation theory for HDNS time series; methodologically, the focus will be on nonparametric statistical inference in linear, bilinear and nonlinear time-frequency analysis with applications to signal processing. Nowadays, technological innovations have made it possible to collect a massive amount of data with complex structures over a relatively long period of time. I see a great demand, opportunity and challenge for statistical analysis of HDNS time series emerging from various important fields of practice. Therefore, statistical theory and methodologies should progress with this demand. However, a unified statistical theory for HDNS time series analysis is still lacking and robust, accurate and computationally efficient methodological toolboxes with rigorous and accurate stochastic uncertainty control barely exist in many applications . I believe that the proposed framework from the nonlinear system point of view will provide an important theoretical and methodological basis for HDNS time series analysis in many scientific disciplines.
非平稳性、高维性和非线性被广泛认为是大数据时代时间序列分析的三大挑战。当在相对较长的时间内同时记录大量随机过程时,这些复杂的数据结构经常出现。数据的复杂性阻碍了研究人员和实践者使用经典的时间序列方法,例如平稳 ARMA 理论和方法。拟议研究的长期目标有两个。首先,将从非线性系统的角度为一大类时域和谱域高维非平稳(HDNS)时间序列的建模和推理建立系统的理论基础。其次,基于上述理论基础,将建立一个鲁棒、自适应和计算高效的方法工具箱,用于对源自各种重要应用的 HDNS 时间系统进行估计、推理和预测。短期内,理论上,主要重点是建立系统的HDNS时间序列的高斯逼近理论和自回归逼近理论;在方法上,重点将放在线性、双线性和非线性时频分析中的非参数统计推断及其在信号处理中的应用。如今,技术创新使得在较长时间内收集大量、结构复杂的数据成为可能。我看到了各个重要实践领域对 HDNS 时间序列统计分析的巨大需求、机遇和挑战。因此,统计理论和方法论应该随着这种需求而进步。然而,HDNS 时间序列分析仍然缺乏统一的统计理论,并且在许多应用中几乎不存在具有严格、准确的随机不确定性控制的稳健、准确和计算高效的方法工具箱。我相信,从非线性系统角度提出的框架将为许多科学学科的HDNS时间序列分析提供重要的理论和方法基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou, Zhou其他文献
Time Window of Head Impact Kinematics Measurement for Calculation of Brain Strain and Strain Rate in American Football.
用于计算美式橄榄球脑应变和应变率的头部撞击运动学测量的时间窗口。
- DOI:
- 发表时间:
2021-10 - 期刊:
- 影响因子:3.8
- 作者:
Liu, Yuzhe;Domel, August G;Cecchi, Nicholas J;Rice, Eli;Callan, Ashlyn A;Raymond, Samuel J;Zhou, Zhou;Zhan, Xianghao;Li, Yiheng;Zeineh, Michael M;Grant, Gerald A;Camarillo, David B - 通讯作者:
Camarillo, David B
Physics-Informed Machine Learning Improves Detection of Head Impacts.
基于物理的机器学习改进了头部撞击的检测。
- DOI:
- 发表时间:
2022-11 - 期刊:
- 影响因子:3.8
- 作者:
Raymond, Samuel J;Cecchi, Nicholas J;Alizadeh, Hossein Vahid;Callan, Ashlyn A;Rice, Eli;Liu, Yuzhe;Zhou, Zhou;Zeineh, Michael;Camarillo, David B - 通讯作者:
Camarillo, David B
Effects of naturally occurring mutations in CUB-1 domain on synthesis, stability, and activity of ADAMTS-13.
CUB-1 结构域中自然发生的突变对 ADAMTS-13 的合成、稳定性和活性的影响。
- DOI:
- 发表时间:
2009-07 - 期刊:
- 影响因子:7.5
- 作者:
Zhou, Zhou;Jing, Hua;Tao, Zhenyin;Choi, Huiwan;Aboulfatova, Khatira;Moake, Joel;Li, Renhao;Dong, Jing - 通讯作者:
Dong, Jing
Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species.
Piperlongumine 阻断 JAK2-STAT3 以抑制胶原蛋白诱导的血小板反应,与活性氧无关。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.7
- 作者:
Yuan, Hengjie;Houck, Katie L;Tian, Ye;Bharadwaj, Uddalak;Hull, Ken;Zhou, Zhou;Zhu, Mingzhao;Zhou, Mingzhao;Wu, Xiaoping;Tweardy, David J;Romo, Daniel;Fu, Xiaoyun;Zhang, Yanjun;Zhang, Jianning;Dong, Jing - 通讯作者:
Dong, Jing
Hepatic Knockdown of Splicing Regulator Slu7 Ameliorates Inflammation and Attenuates Liver Injury in Ethanol-Fed Mice.
剪接调节因子 Slu7 的肝脏敲除可改善乙醇喂养小鼠的炎症并减轻肝损伤。
- DOI:
- 发表时间:
2018-08 - 期刊:
- 影响因子:0
- 作者:
Wang, Jiayou;Kainrad, Noah;Shen, Hong;Zhou, Zhou;Rote, Paula;Zhang, Yanqiao;Nagy, Laura E;Wu, Jiashin;You, Min - 通讯作者:
You, Min
Zhou, Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou, Zhou', 18)}}的其他基金
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
- 批准号:
RGPAS-2021-00036 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
- 批准号:
RGPAS-2021-00036 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
- 批准号:
RGPAS-2021-00036 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
- 批准号:
RGPIN-2021-02715 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
- 批准号:
RGPAS-2021-00036 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
- 批准号:
RGPIN-2021-02715 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
- 批准号:
RGPIN-2015-04927 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
- 批准号:
RGPIN-2015-04927 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
- 批准号:
RGPIN-2015-04927 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical inference under complex temporal dynamics
复杂时间动态下的非参数统计推断
- 批准号:
RGPIN-2015-04927 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
融合符号推理与深度学习的复杂语境下实体关系抽取技术研究
- 批准号:62376033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向复杂场景的知识图谱多跳推理技术研究
- 批准号:62306156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂视觉场景的多任务学习与跨任务推理技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向工业互联网复杂要素的多源特征融合表征与组织推理研究
- 批准号:92167110
- 批准年份:2021
- 资助金额:80 万元
- 项目类别:地区科学基金项目
知识库问答中的复杂问句理解与答案推理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
- 批准号:
10635323 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
- 批准号:
10586785 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
- 批准号:
10445648 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别: