RESEARCH OF ARITHMETIC VARIETIES AND ALGEBRAIC/ANALYTIC STACKS
算术簇和代数/解析栈的研究
基本信息
- 批准号:06640088
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We construct Kummer-Kawamata coverings as algebraic stacks, which play roles such as the curvatures of Hermitian line bundies in complex geometries or the Frobenius maps in the category of varieties over fields of positive characteristics. Applying it, we can translate Esnault-Viehweg vanishing theorems into those in the form of Kawamata vanishings. We obtain vanishing theorems for vector bundles with rational coefficients. We find a general method for enlarging vanishing theorems into those with logarithmic poles. We find divisors on Kummer coverings as algebraic stacks which are assumed to exist in the paper with title Kaehler analogue of Weil conjecture by Serre. However we are not satisfied with it since the theory is not purely algebraic. We prepare more algebro-analytic theory for it. We prove one of Fujita conjecture ; if an ample divisor has the self-intersection number greater than one, the divisor adding a canonical divisor with multiple of the ample divisor more than the dim … More ension of a variety becomes very ample. If the multiple is equal to the dimension, it becomes free. We make use of Kummer coverings and the part of the actions of the automorphism group and induction argument. Fujita found the counter example such that when an ample divisor has the self-intersection of one, the divisor such that the multiple is the dimension plus one does not become free. Studing Esnault-Vehweg type vanishing theorem we find divisors of numerically equivalent to zero are essential instead of those of linearly equivalent to zero if the supports of fractional parts are normal crossing. Hence we define numerical litaka dimension is the maximal Iitaka dimension among the numerical equivalence class. We propose an analogue of Iitaka-Viehweg conjecture for this new dimension. Assuming logarithmic Iitaka-Viehweg conjecture, we obtain the numerical cone theorem as an analogue of Kawamata-Shokulov's Cone theorem and then we have a Zariski decomposition theorem. We define log-stacks to be log-algebraic if there exists a log-scheme dominating the log-stack by surjective log-smooth morphism. We hope this concept is useful in the research of minimal models. We obtain Esnault-Viehweg type vanishing theorems without the resolution of singularities conjecture in the category of varieties over fields of positive characteristics. Also we obtain a vanishing type theorem which works in the category of non Fujiki manifolds. Less
我们将kummer-kawamata构建为代数堆栈,它们在复杂的几何形状中扮演着诸如赫尔米尼线弯曲的曲线或在积极特征领域的变化类别中的frobenius地图。应用它,我们可以将Esnault-Viewweg的定理变成川田消失的形式。我们获得具有合理兼容性的向量束的消失定理。我们发现一种将消失的定理提高到具有对数极点的通用方法。我们发现,Kummer覆盖物上的除数为代数堆栈,这些堆栈假定在论文中以Serre的标题为Weil的标题Kaehler类似物。但是,我们对此不满意,因为该理论不是纯粹的代数。我们为此准备了更多的代数分析理论。我们证明了藤田的一种猜想。如果一个足够的除数的自我交流数大于一个,则除数添加了一个规范的分隔线,而多个分隔线却比昏暗的多个……多样性的兴趣变得非常丰富。如果倍数等于尺寸,则将变得自由。我们利用Kummer覆盖物以及自动形态群体和归纳论点的一部分。藤田找到了反示例,使得当一个充分的鸿沟具有一个人的自我干预时,除数是多个尺寸,即尺寸加一个尺寸,一个人不会变得自由。研究Esnault-Vehweg类型消失的定理,我们发现数值等同于零的划分是必不可少的,而不是线性等同于零的划分,如果分数部分的支撑是正常的交叉。因此,我们定义数值litaka维度是数值等效类别之间的最大ITAKA维度。我们为这个新维度提出了一个itaka-viewweg的类似物。假设对数itaka-viewweg的猜想,我们将数值锥定理作为川田 - s-Shokulov的锥体定理的类似物,然后我们具有zariski分解定理。如果存在通过周围的日志平滑形态,我们将日志堆栈定义为对数堆的日志式堆栈。我们希望这个概念在最小模型的研究中很有用。我们获得了esnault-viewweg类型消失的定理,而没有分辨出奇异性的猜想,而在阳性特征领域的品种类别中。同样,我们获得了一个消失的类型定理,该定理在非藤基歧管类别中起作用。较少的
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
植野 義明: "GMATテスト問題における初等数学の英語表現" 数学教育学会研究紀要. 発表予定. (1995)
Yoshiaki Ueno:“GMAT 考试题中的基础数学英语表达”,数学教育学会公告(1995 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Nakane and D.Schleicher: "Non arcwise connectivity of Tricom" R.I.M.S.Kyoto Uni.Vol.959. 73-83 (1996)
S.Nakane 和 D.Schleicher:“Tricom 的非弧向连接”R.I.M.S.Kyoto Uni.Vol.959。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中根静男,Dierla Schleicher: "Tricornの非弧状連結性について" 数理解析研究所講究録. 959. 73-83 (1996)
Shizuo Nakane、Dierla Schleicher:“关于 Tricorn 的非弧连通性”数学分析研究所的 Kokyuroku 959. 73-83 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Maehara: "Algebraic Champs and Kummer Coverings" Academic Report T.I.P.18. 1-9 (1995)
K.Maehara:“代数冠军和 Kummer Coverings”学术报告 T.I.P.18。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Nakane: "Bifurcation along Arcs in Antiholomorphic Dynamics" Science Bulletin of Josai Uni.Special Issue. 89-97 (1997)
S.Nakane:“反全纯动力学中沿弧的分叉”城西大学科学通报特刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAEHARA Kazuhisa其他文献
MAEHARA Kazuhisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAEHARA Kazuhisa', 18)}}的其他基金
Log algebraic stacks and Diophantine Problems
对数代数栈和丢番图问题
- 批准号:
09640076 - 财政年份:1997
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of algebro-analytic varieties of higher dimension
高维代数解析簇的研究
- 批准号:
03640105 - 财政年份:1991
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
曲线上抛物向量丛模空间的分裂性质
- 批准号:11501154
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Categorical Representation Theory on an Algebraic Surface
代数曲面上的分类表示论
- 批准号:
22K13889 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Vanishing Theorems in Hyperasymptotic Analysis and their Applications
超渐近分析中的消失定理及其应用
- 批准号:
15540158 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modular Representation Theory of Algebraic Groups
代数群的模表示论
- 批准号:
12640034 - 财政年份:2000
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on log canonical divisors on higher dimensional algebraic varieties
高维代数簇的对数正则因数研究
- 批准号:
11440002 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The study of the semi-stability of Einstein-Finsler vector bundles
爱因斯坦-芬斯勒矢量丛的半稳定性研究
- 批准号:
10640083 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)