Experimental and numerical modeling of unsteady fluid-structure interactions occurring across various interfaces in environmental flows
环境流中各种界面上发生的非稳态流固相互作用的实验和数值模拟
基本信息
- 批准号:RGPIN-2022-03844
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
According to the recent report of Natural Resources Canada, the estimated energy potential of the Canadian rivers for in-stream (hydrokinetic) energy is ~340 GW. To harvest this energy, various scales of turbine systems have been developed and tested. These devices operated either standalone or in arrays and exhibit many economic, technical and environmental impact challenges. Furthermore, most rivers typically flow at a velocity lower than 1 m/s, which is not suitable for the efficient operation of the rotary turbine. A new flow-induced vibration (FIV) energy harvesting based on low-speed flows can complement the existing technologies and offer better flexibility for small, remote communities. This proposal explores the potential of FIV as a novel energy source where the hydrokinetic river energy can be utilized as a part of an affordable and environmentally friendly solution to meet the growing energy demands. Fluid--structure interaction (FSI) is a common phenomenon in engineering caused by the alternating vortices formed in the aft body of the slender structure shed downstream with a coherent but varied flow pattern. These vortices create vortex-induced forces on the body, which are periodic, resulting from the phenomenon of flow -induced vibration (FIV). In most practical applications, vortex formation is responsible for FIV, including vortex-induced vibration (VIV), generally of the isolated cylinder, wake- induced vibration (WIV) of multiple circular cylinders, as well as the galloping for complicated cylinders (such as cylinder with attachments and slots). Researchers have primarily studied the suppression of FIV to avoid excessive vibrations leading to failure. In contrast, in the design of energy harvesting systems, the vibrational energy due to FIV must be maximized to increase energy conversion efficiency. A novel experimental and numerical research program is proposed to better understand the underlying flow physics of a highly coupled fluid-structure system, where a variety of flow conditions and structural attributes can considerably alter the FIV response. The proposal focuses on studying the FSI of single and multiple oscillating (flexible) bodies in steady and unsteady flow conditions. Information from vibration response, coherent structures, and wake dynamics will allow developing optimal flow strategies that are essential for engineers to address. The flow cases identified in the short-term objectives of this proposal are more complex, as they investigate FIVs of non--circular cylinders and multi--body array configurations, including effects of the inflow, and free surface (shallow and oscillatory wave flows) to study the feasibility of energy exchange. These aspects are seldom addressed in previous research. The proposed research will explore and facilitate the development of more effective modeling tools based on machine learning algorithms to bridge the gap between experimental and computational fluid dynamics.
根据加拿大自然资源部最近的报告,加拿大河流的河内(流体动力)能源估计能源潜力约为 340 吉瓦。为了收集这种能量,已经开发和测试了各种规模的涡轮机系统。这些设备要么独立运行,要么以阵列形式运行,并呈现出许多经济、技术和环境影响挑战。此外,大多数河流的流速通常低于1m/s,这不适合旋转涡轮机的高效运行。基于低速流动的新型流致振动(FIV)能量收集可以补充现有技术,并为小型偏远社区提供更好的灵活性。该提案探讨了 FIV 作为一种新型能源的潜力,其中流体动力河流能量可以用作经济实惠且环保的解决方案的一部分,以满足不断增长的能源需求。流固耦合(FSI)是工程中的一种常见现象,是由下游细长结构棚尾部形成的交替涡流引起的,具有连贯但变化的流型。这些涡流在物体上产生周期性的涡激力,由流激振动 (FIV) 现象产生。在大多数实际应用中,涡流的形成是导致FIV的原因,包括涡激振动(VIV),通常是孤立圆柱体的涡激振动(VIV),多个圆柱体的尾流激振(WIV),以及复杂圆柱体的舞动(例如带附件和槽的气缸)。研究人员主要研究了 FIV 的抑制,以避免过度振动导致故障。相比之下,在能量收集系统的设计中,必须最大化 FIV 产生的振动能量,以提高能量转换效率。提出了一种新颖的实验和数值研究计划,以更好地了解高度耦合的流体-结构系统的基础流动物理学,其中各种流动条件和结构属性可以显着改变 FIV 响应。该提案重点研究稳态和非稳态流动条件下单个和多个振荡(柔性)体的 FSI。来自振动响应、相干结构和尾流动力学的信息将有助于开发工程师必须解决的最佳流动策略。该提案的短期目标中确定的流动情况更加复杂,因为它们研究非圆形圆柱体和多体阵列配置的 FIV,包括流入和自由表面(浅层和振荡波流)的影响)研究能量交换的可行性。这些方面在以往的研究中很少涉及。拟议的研究将探索并促进基于机器学习算法的更有效建模工具的开发,以弥合实验和计算流体动力学之间的差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roussinova, Vesselina其他文献
Roussinova, Vesselina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roussinova, Vesselina', 18)}}的其他基金
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
- 批准号:
RGPIN-2015-05945 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
洋中脊构造型热液系统对微震簇的响应研究 -以龙旂热液区为例
- 批准号:41906071
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
复杂产品模型等几何有限块理论方法及技术研究
- 批准号:51705158
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
具有大量不规则颗粒随机分布区域的模拟方法及其在混凝土数值模拟中的应用
- 批准号:11171181
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
几何造型若干重要问题的误差可控算法
- 批准号:10901163
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
复杂电大尺寸曲面造型的EMC研究
- 批准号:60901030
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Numerical Modeling and Experimental Simulation in Earthquake Engineering
地震工程数值模拟与实验模拟
- 批准号:
CRC-2017-00238 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Canada Research Chairs
Numerical Modeling and Experimental Simulation in Earthquake Engineering
地震工程数值模拟与实验模拟
- 批准号:
CRC-2017-00238 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Canada Research Chairs
Numerical Modeling And Experimental Simulation In Earthquake Engineering
地震工程数值模拟与实验模拟
- 批准号:
CRC-2017-00238 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Canada Research Chairs
Numerical Modeling And Experimental Simulation In Earthquake Engineering
地震工程数值模拟与实验模拟
- 批准号:
CRC-2017-00238 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Canada Research Chairs
Experimental and numerical modeling of ice cover effects on the secondary flow formation in meander bend
冰盖对曲流弯道二次流形成影响的实验和数值模拟
- 批准号:
518375-2018 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral