Silicon Photonics for Quantum Computing
用于量子计算的硅光子学
基本信息
- 批准号:RGPIN-2021-03163
- 负责人:
- 金额:$ 5.54万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most ambitious application for silicon photonics - Chrostowski's expertise - is in quantum computing. Quantum computing is expected to deliver the next leap in information technology, with anticipated impacts as significant as the development of silicon integrated circuits and the Internet. Quantum computing (QC) differs from classical computing in that particles (electrons, photons) that store bits of information (a quantum bit or "qubit") can exist as a linear combination of states (called superposition), whereas a classical bit can only be in one state. Superposition, together with correlations between qubits (entanglement), offer quantum computers (QCs) an exponential advantage over classical computers, where even 100 qubit QCs would outperform supercomputers with trillions of classical transistors. This would allow us to solve some of the world's most pressing computational and societal problems that are unsolvable by classical computers. QC will enable breakthroughs in fields as diverse as chemical design (e.g. enzymes for carbon capture), material design (e.g. batteries), precision health, optimization, and artificial intelligence. There are several hardware approaches being pursued in industry: the leading contenders are based on superconducting (IBM, Google) and trapped ion (IonQ, Honeywell) qubits. New contenders are based on spins in silicon (Intel) and photonics (PsiQuantum, Xanadu). These silicon-based approaches offer the potential for scaling to millions of qubits owing to the small device size and wafer-scale manufacturing. There are now two prominent silicon photonics QC start-ups, PsiQuantum in California, and Xanadu in Toronto, which have raised $509M and $36M, respectively. This proposal aims to develop a new architecture that has the potential to solve the challenges faced by the above approaches. We propose to develop a silicon-based platform that uses implanted donors as electron spin qubits with photonics used for the interconnects. This hybrid electro-optic approach makes use of two key advantages - electrons make excellent memories (qubits), while photons are excellent for communication (entanglement). This research program will fund 4 PhD, 3 MASc and 8 undergraduate students to design, fabricate, and test photonic devices for quantum computing using silicon donor spin qubits, with the long-term goal of developing all ingredients necessary to build a scalable fault-tolerant QC. Trainees will build experimental apparatus for testing at cryogenic temperatures, design novel nano-photonic components for quantum information processing (single photon sources and detectors, spin qubit to photon coupling using resonators, low-loss optical switches), develop novel fabrication techniques using infrastructure from a recent CFI Innovation grant, and demonstrate qubit operation in a scalable architecture. The HQP trained will be in a position to translate the research and technology into new commercial enterprises.
硅光子学最雄心勃勃的应用——克罗斯托夫斯基的专业知识——是量子计算。量子计算有望带来信息技术的下一次飞跃,其预期影响与硅集成电路和互联网的发展一样重大。 量子计算 (QC) 与经典计算的不同之处在于,存储信息位(量子位或“量子位”)的粒子(电子、光子)可以作为状态的线性组合(称为叠加)存在,而经典位只能存在处于一种状态。叠加以及量子位之间的相关性(纠缠)为量子计算机 (QC) 提供了优于经典计算机的指数级优势,即使是 100 个量子位 QC 也能胜过拥有数万亿个经典晶体管的超级计算机。这将使我们能够解决一些经典计算机无法解决的世界上最紧迫的计算和社会问题。质量控制将在化学设计(例如碳捕获酶)、材料设计(例如电池)、精准健康、优化和人工智能等多个领域实现突破。业界正在寻求多种硬件方法:领先的竞争者基于超导(IBM、谷歌)和俘获离子(IonQ、霍尼韦尔)量子位。新的竞争者基于硅自旋(英特尔)和光子学(PsiQuantum、Xanadu)。由于器件尺寸小和晶圆级制造,这些基于硅的方法提供了扩展到数百万量子位的潜力。现在有两家著名的硅光子QC初创公司,加利福尼亚州的PsiQuantum和多伦多的Xanadu,分别筹集了5.09亿美元和3600万美元。 该提案旨在开发一种新的架构,有可能解决上述方法所面临的挑战。我们建议开发一种硅基平台,使用注入的供体作为电子自旋量子位,并使用光子学进行互连。这种混合电光方法利用了两个关键优势——电子具有出色的记忆能力(量子位),而光子则非常适合通信(纠缠)。该研究项目将资助 4 名博士生、3 名硕士生和 8 名本科生,使用硅供体自旋量子位设计、制造和测试用于量子计算的光子器件,长期目标是开发构建可扩展容错系统所需的所有成分。质量控制。学员将建造用于低温测试的实验装置,设计用于量子信息处理的新型纳米光子组件(单光子源和探测器,使用谐振器的自旋量子位到光子耦合,低损耗光学开关),使用以下基础设施开发新颖的制造技术:最近获得 CFI 创新资助,并在可扩展架构中演示量子位操作。接受培训的总部人员将能够将研究和技术转化为新的商业企业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chrostowski, Lukas其他文献
Silicon Photonic Circuit Design Using Rapid Prototyping Foundry Process Design Kits
使用快速原型铸造工艺设计套件进行硅光子电路设计
- DOI:
10.1109/jstqe.2019.2917501 - 发表时间:
2019-10 - 期刊:
- 影响因子:4.9
- 作者:
Chrostowski, Lukas;Shoman, Hossam;Hammood, Mustafa;Yun, Han;Jhoja, Jaspreet;Luan, Enxiao;Lin, Stephen;Mistry, Ajay;Witt, Donald;Jaeger, Nicolas A.F.;et al - 通讯作者:
et al
Feedback control for microring weight banks
微环配重库的反馈控制
- DOI:
10.1364/oe.26.026422 - 发表时间:
2018-09 - 期刊:
- 影响因子:3.8
- 作者:
Tait, Alexander N.;Jayatilleka, Hasitha;De Lima, Thomas Ferreira;Ma, Philip Y.;Nahmias, Mitchell A.;Shastri, Bhavin J.;Shekhar, Sudip;Chrostowski, Lukas;Prucnal, Paul R. - 通讯作者:
Prucnal, Paul R.
Feedback control for microring weight banks
微环配重库的反馈控制
- DOI:
10.1364/oe.26.026422 - 发表时间:
2018-09 - 期刊:
- 影响因子:3.8
- 作者:
Tait, Alexander N.;Jayatilleka, Hasitha;De Lima, Thomas Ferreira;Ma, Philip Y.;Nahmias, Mitchell A.;Shastri, Bhavin J.;Shekhar, Sudip;Chrostowski, Lukas;Prucnal, Paul R. - 通讯作者:
Prucnal, Paul R.
Silicon Photonics for Artificial Intelligence and Neuromorphic Computing
用于人工智能和神经形态计算的硅光子学
- DOI:
10.1109/sum48717.2021.9505837 - 发表时间:
2021-07 - 期刊:
- 影响因子:0
- 作者:
Shastri, Bhavin J.;de Lima, Thomas Ferreira;Huang, Chaoran;Marquez, Bicky A.;Shekhar, Sudip;Chrostowski, Lukas;Prucnal, Paul R. - 通讯作者:
Prucnal, Paul R.
Neuromorphic Photonic Networks
神经形态光子网络
- DOI:
- 发表时间:
2021-07 - 期刊:
- 影响因子:0
- 作者:
Shastri, Bhavin J;Bilodeau, Simon;Marquez, Bicky A;Tait, Alexander N;de Lima, Thomas F;Huang, Chaoran;Chrostowski, Lukas;Shekhar, Sudip;Prucnal, Paul R - 通讯作者:
Prucnal, Paul R
Chrostowski, Lukas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chrostowski, Lukas', 18)}}的其他基金
Silicon Photonics for Quantum Computing
用于量子计算的硅光子学
- 批准号:
RGPIN-2021-03163 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Scalable Neuromorphic Photonic Circuits
可扩展的神经形态光子电路
- 批准号:
542588-2019 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Development Grants
NSERC CREATE in Quantum Computing
NSERC CREATE 量子计算
- 批准号:
543245-2020 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Training Experience
Scalable Neuromorphic Photonic Circuits
可扩展的神经形态光子电路
- 批准号:
542588-2019 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Development Grants
NSERC CREATE in Quantum Computing
NSERC CREATE 量子计算
- 批准号:
543245-2020 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Training Experience
Silicon Photonics for Quantum Computing
用于量子计算的硅光子学
- 批准号:
RGPIN-2021-03163 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Phase I low-cost lasers and assembly for high-performance silicon photonic transceivers and sensors
用于高性能硅光子收发器和传感器的第一阶段低成本激光器和组件
- 批准号:
560548-2021 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Idea to Innovation
Phase I low-cost lasers and assembly for high-performance silicon photonic transceivers and sensors
用于高性能硅光子收发器和传感器的第一阶段低成本激光器和组件
- 批准号:
560548-2021 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Idea to Innovation
Market Assessment of silicon photonics-based biosensor for disease detection
用于疾病检测的硅光子生物传感器的市场评估
- 批准号:
560504-2021 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Idea to Innovation
The Canadian SiEPIC silicon photonics foundry - SiEPICfab
加拿大SiEPIC硅光子代工厂-SiEPICfab
- 批准号:
523096-2017 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
双稀土共掺杂In2S3基纳米半导体光学特性调控研究
- 批准号:11904011
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
量子等离激元下的局域电场增强及其在单分子探测等纳光子学领域的应用
- 批准号:11904344
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
原子尺度光场局域的形成机制、表征和应用研究
- 批准号:11874166
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于光与物质强耦合条件下的非辐射能量转移特性的研究
- 批准号:11804018
- 批准年份:2018
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
石墨烯-贵金属低维复合结构光学性质研究
- 批准号:11774036
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Scalable quantum photonics based on color center integration with angle-etched silicon carbide devices
职业:基于色心集成与角度蚀刻碳化硅器件的可扩展量子光子学
- 批准号:
2047564 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant
Silicon Photonics for Quantum Computing
用于量子计算的硅光子学
- 批准号:
RGPIN-2021-03163 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Silicon-Photonics High-Resolution Real-Time Probability Apparatus for Quantum Applications
职业:用于量子应用的硅光子高分辨率实时概率装置
- 批准号:
2045935 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant
Silicon Photonics for Quantum Computing
用于量子计算的硅光子学
- 批准号:
RGPIN-2021-03163 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Quantum state control with advanced optical technique for spin defects in silicon carbide
利用先进光学技术控制碳化硅自旋缺陷的量子态
- 批准号:
20H00355 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Grant-in-Aid for Scientific Research (A)