高次元代数多様体及び複素多様体の双有理幾何の研究

高维代数簇和复簇的双有理几何研究

基本信息

  • 批准号:
    62740029
  • 负责人:
  • 金额:
    $ 0.7万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1987
  • 资助国家:
    日本
  • 起止时间:
    1987 至 无数据
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

森脇 淳其他文献

Noether inequality for algebraic threefolds
代数三重的诺特不等式
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口 周;森脇 淳;生駒 英晃;Christopher D. Hacon and Chen Jiang;Chen Jiang
  • 通讯作者:
    Chen Jiang
Diophantine geometry Vvewed from Arakelov geometry
丢番图几何源自阿拉克洛夫几何
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森脇 淳
  • 通讯作者:
    森脇 淳
モーデル‐ファルティングスの定理 : ディオファントス幾何からの完全証明
Mordell-Faltings 定理:丢番图几何的完整证明
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口 周;森脇 淳;生駒 英晃
  • 通讯作者:
    生駒 英晃
Dominant rational maps in the category of log schemes
对数方案类别中的主导有理图
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    淺田 孝幸 編著;佐々木 宏;伊佐田 文彦;他 共著;森脇 淳
  • 通讯作者:
    森脇 淳
On alpha-invariants of Fano varieties
关于 Fano 簇的 alpha 不变量
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口 周;森脇 淳;生駒 英晃;Christopher D. Hacon and Chen Jiang;Chen Jiang;Chen Jiang
  • 通讯作者:
    Chen Jiang

森脇 淳的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('森脇 淳', 18)}}的其他基金

Arakelov geometry over adelic curves
adelic 曲线上的 Arakelov 几何
  • 批准号:
    21K03203
  • 财政年份:
    2021
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Diophantine Geometry and Arakelov geometry
丢番图几何与阿拉克洛夫几何研究
  • 批准号:
    17F17730
  • 财政年份:
    2017
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数多様体の有理点の問題
代数簇的有理点问题
  • 批准号:
    09740017
  • 财政年份:
    1997
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
アラケロフ幾何とその応用
阿拉克洛夫几何及其应用
  • 批准号:
    08211228
  • 财政年份:
    1996
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
代数体又は関数体上で定義された代数多様体の有理点の分布
在代数域或函数域上定义的代数簇有理点的分布
  • 批准号:
    08740017
  • 财政年份:
    1996
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
半安定ファイバー空間の研究
半稳定纤维空间的研究
  • 批准号:
    03740029
  • 财政年份:
    1991
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
土壤高氮累积区非饱和-饱和界面氮迁移转化及其对地下水硝酸盐演变的作用机制
  • 批准号:
    42377080
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了