High throughput scaffoldless 3D tissue culture kit
高通量无支架 3D 组织培养套件
基本信息
- 批准号:555927-2020
- 负责人:
- 金额:$ 9.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Idea to Innovation
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cells have been traditionally grown in the form of planar two-dimensional (2D) constructs with the assumption that they approximate the 3D behaviour of tissues, organs and tumours. Since 2D cell structures cannot accurately mimic cell-cell and cell-matrix interactions among the complex 3D arrangements within living organisms, researchers have pivoted to using three-dimensional (3D) cellular structures to discover and screen drugs. Hence, new methods and devices to produce 3D structures have been developed and commercialized, but all face limitations. They are inordinately time-consuming, require UV light exposure, are toxic towards cells, or are relatively expensive and complex to operate. This has restricted their adoption and wide use across academia and industry. Our method to manipulate cells using diamagnetophoresis to produce 3D cellular structures is a robust and promising alternative. It overcomes the shortcomings of available methods as a label-free, scaffold-free and scalable technique that prints cells rapidly into spheroids or rings of different sizes. We suspend cells in a paramagnetic solution and seed the suspension into microwells that are subsequently placed on a magnet array. Due to the applied magnetic field gradient, diamagnetic cells migrate and form aggregates within three hours. Our field-assisted technique does not require physical inserts or a matrix so that the 3D cellular structures can grow independently. The entire process can be automated and scaled up to produce abundant 3D structures on a multiwell plate. We have demonstrated proof of concept in our laboratory at McMaster University. The technology will be developed further so that system prototypes can be used for testing by identified end-users. Once our technology is validated, we will examine licensing options with interested industry partners.
传统上,细胞以平面二维 (2D) 结构的形式生长,并假设它们接近组织、器官和肿瘤的 3D 行为。由于 2D 细胞结构无法准确模拟生物体内复杂 3D 排列之间的细胞与细胞和细胞与基质之间的相互作用,因此研究人员已转向使用三维 (3D) 细胞结构来发现和筛选药物。因此,生产 3D 结构的新方法和设备已经被开发出来并商业化,但都面临局限性。它们非常耗时,需要紫外线照射,对细胞有毒,或者操作相对昂贵且复杂。这限制了它们在学术界和工业界的采用和广泛使用。我们使用抗磁泳操作细胞以产生 3D 细胞结构的方法是一种稳健且有前途的替代方案。它克服了现有方法的缺点,作为一种无标记、无支架和可扩展的技术,可将细胞快速打印成不同尺寸的球体或环。我们将细胞悬浮在顺磁性溶液中,并将悬浮液接种到微孔中,随后将其放置在磁体阵列上。由于施加的磁场梯度,抗磁性细胞在三小时内迁移并形成聚集体。我们的现场辅助技术不需要物理插入物或矩阵,因此 3D 细胞结构可以独立生长。整个过程可以自动化并放大,以在多孔板上产生丰富的 3D 结构。我们已经在麦克马斯特大学的实验室展示了概念验证。该技术将得到进一步开发,以便系统原型可以由确定的最终用户进行测试。一旦我们的技术得到验证,我们将与感兴趣的行业合作伙伴一起研究许可选项。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Puri, Ishwar其他文献
Puri, Ishwar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Puri, Ishwar', 18)}}的其他基金
Development of functional inks using hybrid nanoparticles for disruptive applications
使用混合纳米颗粒开发用于颠覆性应用的功能性墨水
- 批准号:
RGPIN-2019-06571 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Stelco Industrial Research Chair in Advanced Coated Steels
NSERC/Stelco 高级涂层钢工业研究主席
- 批准号:
305921-2017 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Industrial Research Chairs
Development of functional inks using hybrid nanoparticles for disruptive applications
使用混合纳米颗粒开发用于颠覆性应用的功能性墨水
- 批准号:
RGPIN-2019-06571 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Stelco Industrial Research Chair in Advanced Coated Steels
NSERC/Stelco 高级涂层钢工业研究主席
- 批准号:
305921-2017 - 财政年份:2021
- 资助金额:
$ 9.11万 - 项目类别:
Industrial Research Chairs
Development of functionalized magnetic nanoparticles to isolate and detect bacteria
开发用于分离和检测细菌的功能化磁性纳米颗粒
- 批准号:
557077-2020 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
Development of functional inks using hybrid nanoparticles for disruptive applications
使用混合纳米颗粒开发用于颠覆性应用的功能性墨水
- 批准号:
RGPIN-2019-06571 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Stelco Industrial Research Chair in Advanced Coated Steels
NSERC/Stelco 高级涂层钢工业研究主席
- 批准号:
305921-2017 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Industrial Research Chairs
Development of functionalized magnetic nanoparticles to isolate and detect bacteria
开发用于分离和检测细菌的功能化磁性纳米颗粒
- 批准号:
557077-2020 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
Alliance Grants
Venture Academy & Indigenous/Outreach NSERC - Science Promoters - PromoScience Grant Application 2020
创业学院
- 批准号:
556838-2020 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
PromoScience
Venture Academy & Indigenous/Outreach NSERC - Science Promoters - PromoScience Grant Application 2020
创业学院
- 批准号:
556838-2020 - 财政年份:2020
- 资助金额:
$ 9.11万 - 项目类别:
PromoScience
相似海外基金
Towards scaffoldless tissue engineering: Defining self organisation of embryonic cells into tissue structures
迈向无支架组织工程:将胚胎细胞的自组织定义为组织结构
- 批准号:
1902645 - 财政年份:2017
- 资助金额:
$ 9.11万 - 项目类别:
Studentship